Advertisement

Recent advances in 3D printing: vascular network for tissue and organ regeneration

  • Sung Yun Hann
    Affiliations
    Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC
    Search for articles by this author
  • Haitao Cui
    Affiliations
    Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC
    Search for articles by this author
  • Timothy Esworthy
    Affiliations
    Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC
    Search for articles by this author
  • Shida Miao
    Affiliations
    Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC
    Search for articles by this author
  • Xuan Zhou
    Affiliations
    Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC
    Search for articles by this author
  • Se-jun Lee
    Affiliations
    Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC
    Search for articles by this author
  • John P. Fisher
    Affiliations
    Fischell Department of Bioengineering, University of Maryland, College Park, Maryland

    Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
    Search for articles by this author
  • Lijie Grace Zhang
    Correspondence
    Reprint requests: Lijie Grace Zhang, Department of Mechanical and Aerospace Engineering, The George Washington University, Science and Engineering, Hall 3590, 800 22nd Street NW, Washington DC 20052.
    Affiliations
    Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC

    Department of Electrical and Computer Engineering, The George Washington University, Washington, DC

    Department of Biomedical Engineering, The George Washington University, Washington, DC

    Department of Medicine, The George Washington University Medical Center, Washington, DC
    Search for articles by this author
Published:April 04, 2019DOI:https://doi.org/10.1016/j.trsl.2019.04.002
      Over the past years, the fabrication of adequate vascular networks has remained the main challenge in engineering tissues due to technical difficulties, while the ultimate objective of tissue engineering is to create fully functional and sustainable organs and tissues to transplant in the human body. There have been a number of studies performed to overcome this limitation, and as a result, 3D printing has become an emerging technique to serve in a variety of applications in constructing vascular networks within tissues and organs. 3D printing incorporated technical approaches allow researchers to fabricate complex and systematic architecture of vascular networks and offer various selections for fabrication materials and printing techniques. In this review, we will discuss materials and strategies for 3D printed vascular networks as well as specific applications for certain vascularized tissue and organ regeneration. We will also address the current limitations of vascular tissue engineering and make suggestions for future directions research may take.

      Abbreviations:

      α-SMA (α-smooth muscle actin), BMP-2 (Bone morphogenetic protein-2), CAD (Computer-aided design), cBCG (Crosslinked bioactive nanocoating with growth factors), dECM (Decellularized extracellular matrix), ECM (Extracellular matrix), ECs (Endothelial cells), EPCs (Endothelial progenitor cells), FDM (Fused deposition modeling), GelMA (Gelatin methacryloyl), HA (Hyaluronic acid), hMSCs (Human mesenchymal stem cells), HUVECs (Human umbilical vein endothelial cells), MMP (Matrix metalloprotease), PCL (Polycaprolactone), PEGDA (Polyethylene glycol diacrylate), PLA (Polylactic acid), PLGA (Polylactic-glycolic acid), SLA (Stereolithography apparatus), SMCs (Smooth muscle cells), UV (Ultraviolet), VEGF (Vascular endothelial growth factor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cui H.
        • Miao S.
        • Esworthy T.
        • Zhou X.
        • Lee S.J.
        • Liu C.
        • et al.
        3D bioprinting for cardiovascular regeneration and pharmacology.
        Adv Drug Deliv Rev. 2018; 132: 252-269
        • Cui H.
        • Zhu W.
        • Holmes B.
        • Zhang L.G.
        Biologically Inspired smart release system based on 3D bioprinted perfused scaffold for vascularized tissue regeneration.
        Adv Sci. 2016; 31600058
        • Cui H.
        • Zhu W.
        • Nowicki M.
        • Zhou X.
        • Khademhosseini A.
        • Zhang L.G.
        Hierarchical fabrication of engineered vascularized bone biphasic constructs via dual 3D Bioprinting: integrating regional bioactive factors into architectural design.
        Adv Healthc Mater. 2016; 5: 2174-2181
        • Zhou X.
        • Castro N.J.
        • Zhu W.
        • Cui H.
        • Aliabouzar M.
        • Sarkar K.
        • et al.
        Improved human bone marrow mesenchymal stem cell osteogenesis in 3D bioprinted tissue scaffolds with low intensity pulsed ultrasound stimulation.
        Sci Rep. 2016; 6: 32876
        • Cui H.
        • Nowicki M.
        • Fisher J.P.
        • Zhang L.G.
        3D bioprinting for organ regeneration.
        Adv Healthc Mater. 2017; 6: 1601118
        • Griffith L.G.
        • Wu B.
        • Cima M.J.
        • Powers M.J.
        • Chaignaud B.
        • Vacanti J.P.
        In vitro organogenesis of liver tissuea.
        Ann N Y Acad Sci. 1997; 831: 382-397
        • Zein N.N.
        • Hanouneh I.A.
        • Bishop P.D.
        • Samaan M.
        • Eghtesad B.
        • Quintini C.
        • et al.
        Three-dimensional print of a liver for preoperative planning in living donor liver transplantation.
        Liver Transplant. 2013; 19: 1304-1310
        • Novosel E.C.
        • Kleinhans C.
        • Kluger P.J.
        Vascularization is the key challenge in tissue engineering.
        Adv Drug Deliv Rev. 2011; 63: 300-311
        • Paulsen S.
        • Miller J.
        Tissue vascularization through 3D printing: will technology bring us flow?.
        Dev Dyn. 2015; 244: 629-640
        • Jose R.R.
        • Rodriguez M.J.
        • Dixon T.A.
        • Omenetto F.
        • Kaplan D.L.
        Evolution of bioinks and additive manufacturing technologies for 3D bioprinting.
        ACS Biomater Sci Eng. 2016; 2: 1662-1678
      1. Hull CW. Apparatus for production of three-dimensional objects by stereolithography. Google Patents; 1986.

        • Patra S.
        • Young V.
        A review of 3D printing techniques and the future in biofabrication of bioprinted tissue.
        Cell Biochem Biophys. 2016; 74: 93-98
        • Murphy S.V.
        • Atala A.
        3D bioprinting of tissues and organs.
        Nat Biotechnol. 2014; 32: 773-785
        • Ozbolat I.T.
        • Hospodiuk M.
        Current advances and future perspectives in extrusion-based bioprinting.
        Biomaterials. 2016; 76: 321-343
        • Suri S.
        • Han L.H.
        • Zhang W.
        • Singh A.
        • Chen S.
        • Schmidt C.E.
        Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering.
        Biomed Microdevices. 2011; 13: 983-993
        • Lin H.
        • Zhang D.
        • Alexander P.G.
        • Yang G.
        • Tan J.
        • Cheng A.W.
        • et al.
        Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture.
        Biomaterials. 2013; 34: 331-339
        • Laschke M.W.
        • Rucker M.
        • Jensen G.
        • Carvalho C.
        • Mulhaupt R.
        • Gellrich N.C.
        • et al.
        Incorporation of growth factor containing Matrigel promotes vascularization of porous PLGA scaffolds.
        J Biomed Mater Res A. 2008; 85: 397-407
        • Kinstlinger I.S.
        • Miller J.S.
        3D-printed fluidic networks as vasculature for engineered tissue.
        Lab Chip. 2016; 16: 2025-2043
        • Hinton T.J.
        • Jallerat Q.
        • Palchesko R.N.
        • Park J.H.
        • Grodzicki M.S.
        • Shue H.-J.
        • et al.
        Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels.
        Sci Adv. 2015; 1e1500758
        • Golden A.P.
        • Tien J.
        Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element.
        Lab Chip. 2007; 7: 720-725
        • Lee V.K.
        • Kim D.Y.
        • Ngo H.
        • Lee Y.
        • Seo L.
        • Yoo S.S.
        • et al.
        Creating perfused functional vascular channels using 3D bio-printing technology.
        Biomaterials. 2014; 35: 8092-8102
        • Zhao L.
        • Lee V.K.
        • Yoo S.S.
        • Dai G.
        • Intes X.
        The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds.
        Biomaterials. 2012; 33: 5325-5332
        • Wu W.
        • DeConinck A.
        • Lewis J.A.
        Omnidirectional printing of 3D microvascular networks.
        Adv Mater. 2011; 23: H178-H183
        • Zhang W.J.
        • Liu W.
        • Cui L.
        • Cao Y.
        Tissue engineering of blood vessel.
        J Cell Mol Med. 2007; 11: 945-957
        • Malda J.
        • Visser J.
        • Melchels F.P.
        • Jungst T.
        • Hennink W.E.
        • Dhert W.J.
        • et al.
        25th anniversary article: engineering hydrogels for biofabrication.
        Adv Mater. 2013; 25: 5011-5028
        • Khalil S.
        • Sun W.
        Bioprinting endothelial cells with alginate for 3D tissue constructs.
        J Biomech Eng. 2009; 131111002
        • Yamamoto K.
        • Takahashi T.
        • Asahara T.
        • Ohura N.
        • Sokabe T.
        • Kamiya A.
        • et al.
        Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to fluid shear stress.
        J Appl Physiol. 2003; 95: 2081-2088
        • Place E.S.
        • Evans N.D.
        • Stevens M.M.
        Complexity in biomaterials for tissue engineering.
        Nat Mater. 2009; 8: 457-470
        • Di Lullo G.A.
        • Sweeney S.M.
        • Korkko J.
        • Ala-Kokko L.
        • San Antonio J.D.
        Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen.
        J Biol Chem. 2002; 277: 4223-4231
        • Hellio D.
        • Djabourov M.
        Physically and chemically crosslinked gelatin gels.
        Macromol Symposia. 2006; 241: 23-27
        • Kuijpers A.J.
        • van Wachem P.B.
        • van Luyn M.J.
        • Brouwer L.A.
        • Engbers G.H.
        • Krijgsveld J.
        • et al.
        In vitro and in vivo evaluation of gelatin-chondroitin sulphate hydrogels for controlled release of antibacterial proteins.
        Biomaterials. 2000; 21: 1763-1772
        • Rowe S.L.
        • Stegemann J.P.
        Microstructure and mechanics of collagen-fibrin matrices polymerized using ancrod snake venom enzyme.
        J Biomech Eng. 2009; 131061012
        • Rao R.R.
        • Peterson A.W.
        • Ceccarelli J.
        • Putnam A.J.
        • Stegemann J.P.
        Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials.
        Angiogenesis. 2012; 15: 253-264
        • Kleinman H.K.
        • Martin G.R.
        Matrigel: basement membrane matrix with biological activity.
        Semin Cancer Biol. 2005; 15: 378-386
        • Hughes C.S.
        • Postovit L.M.
        • Lajoie G.A.
        Matrigel: a complex protein mixture required for optimal growth of cell culture.
        Proteomics. 2010; 10: 1886-1890
        • Rowley J.A.
        • Madlambayan G.
        • Mooney D.J.
        Alginate hydrogels as synthetic extracellular matrix materials.
        Biomaterials. 1999; 20: 45-53
        • Augst A.D.
        • Kong H.J.
        • Mooney D.J.
        Alginate hydrogels as biomaterials.
        Macromol Biosci. 2006; 6: 623-633
        • Kogan G.
        • Soltes L.
        • Stern R.
        • Gemeiner P.
        Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications.
        Biotechnol Lett. 2007; 29: 17-25
        • Ouyang L.
        • Highley C.B.
        • Rodell C.B.
        • Sun W.
        • Burdick J.A.
        3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking.
        ACS Biomater Sci Eng. 2016; 2: 1743-1751
        • Johansson B.
        Agarose gel electrophoresis.
        Scand J Clin Lab Invest. 1972; 29: 7-19
        • Oliveira J.T.
        • Reis R.
        Polysaccharide‐based materials for cartilage tissue engineering applications.
        J Tissue Eng Regen Med. 2011; 5: 421-436
        • Sakai S.
        • Hashimoto I.
        • Kawakami K.
        Agarose-gelatin conjugate for adherent cell-enclosing capsules.
        Biotechnol Lett. 2007; 29: 731-735
        • Freier T.
        • Koh H.S.
        • Kazazian K.
        • Shoichet M.S.
        Controlling cell adhesion and degradation of chitosan films by N-acetylation.
        Biomaterials. 2005; 26: 5872-5878
        • da Silva R.M.
        • López‐Pérez P.M.
        • Elvira C.
        • Mano J.F.
        • Román J.S.
        • Reis R.L.
        Poly (N‐isopropylacrylamide) surface‐grafted chitosan membranes as a new substrate for cell sheet engineering and manipulation.
        Biotechnol Bioeng. 2008; 101: 1321-1331
        • Malafaya P.
        • Pedro A.
        • Peterbauer A.
        • Gabriel C.
        • Redl H.
        • Reis R.
        Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells.
        J Mater Sci Mater Med. 2005; 16: 1077-1085
        • Pati F.
        • Jang J.
        • Ha D.H.
        • Won Kim S.
        • Rhie J.W.
        • Shim J.H.
        • et al.
        Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink.
        Nat Commun. 2014; 5: 3935
        • Kim B.S.
        • Kwon Y.W.
        • Kong J.S.
        • Park G.T.
        • Gao G.
        • Han W.
        • et al.
        3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering.
        Biomaterials. 2018; 168: 38-53
        • Kim B.S.
        • Kim H.
        • Gao G.
        • Jang J.
        • Cho D.W.
        Decellularized extracellular matrix: a step towards the next generation source for bioink manufacturing.
        Biofabrication. 2017; 9034104
        • Jang J.
        • Kim T.G.
        • Kim B.S.
        • Kim S.-W.
        • Kwon S.-M.
        • Cho D.-W.
        Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking.
        Acta biomaterialia. 2016; 33: 88-95
        • Gopinathan J.
        • Noh I.
        Recent trends in bioinks for 3D printing.
        Biomater Res. 2018; 22: 11
        • Garlotta D.
        A literature review of poly (lactic acid).
        J Poly Environ. 2001; 9: 63-84
        • Guvendiren M.
        • Molde J.
        • Soares R.M.
        • Kohn J.
        Designing biomaterials for 3D printing.
        ACS Biomater Sci Eng. 2016; 2: 1679-1693
        • Serra T.
        • Mateos-Timoneda M.A.
        • Planell J.A.
        • Navarro M.
        3D printed PLA-based scaffolds: a versatile tool in regenerative medicine.
        Organogenesis. 2013; 9: 239-244
        • Lee H.
        • Cho D.W.
        One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology.
        Lab Chip. 2016; 16: 2618-2625
        • Ouyang L.
        • Highley C.B.
        • Sun W.
        • Burdick J.A.
        A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks.
        Adv Mater. 2017; 29: 1604983
        • Melchiorri A.J.
        • Hibino N.
        • Best C.A.
        • Yi T.
        • Lee Y.U.
        • Kraynak C.A.
        • et al.
        3D-printed biodegradable polymeric vascular grafts.
        Adv Healthc Mater. 2016; 5: 319-325
        • Bohorquez M.
        • Koch C.
        • Trygstad T.
        • Pandit N.
        A study of the temperature-dependent micellization of pluronic F127.
        J Colloid Interface Sci. 1999; 216: 34-40
        • Mandrycky C.
        • Wang Z.
        • Kim K.
        • Kim D.-H.
        3D bioprinting for engineering complex tissues.
        Biotechnol Sdv. 2016; 34: 422-434
        • Higuchi A.
        • Ling Q.-D.
        • Kumar S.S.
        • Chang Y.
        • Alarfaj A.A.
        • Munusamy M.A.
        • et al.
        Physical cues of cell culture materials lead the direction of differentiation lineages of pluripotent stem cells.
        J Mater Chem B. 2015; 3: 8032-8058
        • Badorff C.
        • Brandes R.P.
        • R Popp
        • Rupp S.
        • Urbich C.
        • Aicher A.
        • et al.
        Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes.
        Circulation. 2003; 107: 1024-1032
        • Singh A.
        • Singh A.
        • Sen D.
        Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015).
        Stem Cell Res Ther. 2016; 7: 82
        • Nemeno-Guanzon J.G.
        • Lee S.
        • Berg J.R.
        • Jo Y.H.
        • Yeo J.E.
        • Nam B.M.
        • et al.
        Trends in tissue engineering for blood vessels.
        J Biomed Biotechnol. 2012; 2012956345
        • Bose S.
        • Roy M.
        • Bandyopadhyay A.
        Recent advances in bone tissue engineering scaffolds.
        Trends Biotechnol. 2012; 30: 546-554
        • Wang J.
        • Yang M.
        • Zhu Y.
        • Wang L.
        • Tomsia A.P.
        • Mao C.
        Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds.
        Adv Mater. 2014; 26: 4961-4966
        • Tsigkou O.
        • Pomerantseva I.
        • Spencer J.A.
        • Redondo P.A.
        • Hart A.R.
        • O'Doherty E.
        • et al.
        Engineered vascularized bone grafts.
        Proc Natl Acad Sci. 2010; 107: 3311-3316
        • Santos M.I.
        • Reis R.L.
        Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges.
        Macromol Biosci. 2010; 10: 12-27
        • Moore W.R.
        • Graves S.E.
        • Bain G.I.
        Synthetic bone graft substitutes.
        ANZ J Surg. 2001; 71: 354-361
        • Holmes B.
        • Bulusu K.
        • Plesniak M.
        • Zhang L.G.
        A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair.
        Nanotechnology. 2016; 27064001
        • Temple J.P.
        • Hutton D.L.
        • Hung B.P.
        • Huri P.Y.
        • Cook C.A.
        • Kondragunta R.
        • et al.
        Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds.
        J Biomed Mater ResA. 2014; 102: 4317-4325
        • Yan Y.
        • Chen H.
        • Zhang H.
        • Guo C.
        • Yang K.
        • Chen K.
        • et al.
        Vascularized 3D printed scaffolds for promoting bone regeneration.
        Biomaterials. 2019; 190: 97-110
        • Donneys A.
        • Weiss D.M.
        • Deshpande S.S.
        • Ahsan S.
        • Tchanque-Fossuo C.N.
        • Sarhaddi D.
        • et al.
        Localized deferoxamine injection augments vascularity and improves bony union in pathologic fracture healing after radiotherapy.
        Bone. 2013; 52: 318-325
        • Potier E.
        • Ferreira E.
        • Dennler S.
        • Mauviel A.
        • Oudina K.
        • Logeart‐Avramoglou D.
        • et al.
        Desferrioxamine‐driven upregulation of angiogenic factor expression by human bone marrow stromal cells.
        J Tissue Eng Regen Med. 2008; 2: 272-278
        • Liu X.
        • Jakus A.E.
        • Kural M.
        • Qian H.
        • Engler A.
        • Ghaedi M.
        • et al.
        Vascularization of natural and synthetic bone scaffolds.
        Cell Transplant. 2018; 27: 1269-1280
        • Merceron T.K.
        • Burt M.
        • Seol Y.J.
        • Kang H.W.
        • Lee S.J.
        • Yoo J.J.
        • et al.
        A 3D bioprinted complex structure for engineering the muscle-tendon unit.
        Biofabrication. 2015; 7035003
        • Levenberg S.
        • Rouwkema J.
        • Macdonald M.
        • Garfein E.S.
        • Kohane D.S.
        • Darland D.C.
        • et al.
        Engineering vascularized skeletal muscle tissue.
        Nat Biotechnol. 2005; 23: 879-884
        • Zisch A.H.
        • Lutolf M.P.
        • Hubbell J.A.
        Biopolymeric delivery matrices for angiogenic growth factors.
        Cardiovasc Pathol. 2003; 12: 295-310
        • Von Degenfeld G.
        • Banfi A.
        • Springer M.L.
        • Blau H.M.
        Myoblast‐mediated gene transfer for therapeutic angiogenesis and arteriogenesis.
        Br J Pharmacol. 2003; 140: 620-626
        • Lu Y.
        • Shansky J.
        • Del Tatto M.
        • Ferland P.
        • Wang X.
        • Vandenburgh H.
        Recombinant vascular endothelial growth factor secreted from tissue-engineered bioartificial muscles promotes localized angiogenesis.
        Circulation. 2001; 104: 594-599
        • Betts J.G.
        Anatomy and physiology.
        OpenStax College, Rice University, Houston, Texas2013
        • Kumbar S.G.
        • Nukavarapu S.P.
        • James R.
        • Nair L.S.
        • Laurencin C.T.
        Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering.
        Biomaterials. 2008; 29: 4100-4107
        • Michael S.
        • Sorg H.
        • Peck C.-T.
        • Koch L.
        • Deiwick A.
        • Chichkov B.
        • et al.
        Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice.
        PloS One. 2013; 8: e57741
        • Skardal A.
        • Mack D.
        • Kapetanovic E.
        • Atala A.
        • Jackson J.D.
        • Yoo J.
        • et al.
        Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds.
        Stem Cells Transl Med. 2012; 1: 792-802
        • Bibb R.
        • Nottrodt N.
        • Gillner A.
        Artificial vascularised scaffolds for 3D-tissue regeneration – a perspective of the ArtiVasc 3D Project.
        Int J Bioprint. 2016; 2: 93-102
        • Ballaun C.
        • Weninger W.
        • Uthman A.
        • Weich H.
        • Tschachler E.
        Human keratinocytes express the three major splice forms of vascular endothelial growth factor.
        J Invest Dermatol. 1995; 104: 7-10
        • Thom T.
        • Haase N.
        • Rosamond W.
        • Howard V.J.
        • Rumsfeld J.
        • Manolio T.
        • et al.
        Heart disease and stroke statistics–2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee.
        Circulation. 2006; 113: e85-e151
        • Tomanek R.J.
        • Runyan R.B.
        Formation of the heart and its regulation.
        Springer Science & Business Media, 2012
        • Miller J.S.
        • Stevens K.R.
        • Yang M.T.
        • Baker B.M.
        • Nguyen D.-H.T.
        • Cohen D.M.
        • et al.
        Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues.
        Nat Mater. 2012; 11: 768
        • Jia W.
        • Gungor-Ozkerim P.S.
        • Zhang Y.S.
        • Yue K.
        • Zhu K.
        • Liu W.
        • et al.
        Direct 3D bioprinting of perfusable vascular constructs using a blend bioink.
        Biomaterials. 2016; 106: 58-68
        • Cui X.
        • Boland T.
        Human microvasculature fabrication using thermal inkjet printing technology.
        Biomaterials. 2009; 30: 6221-6227
        • Zhang Y.S.
        • Arneri A.
        • Bersini S.
        • Shin S.R.
        • Zhu K.
        • Goli-Malekabadi Z.
        • et al.
        Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip.
        Biomaterials. 2016; 110: 45-59
        • Duan B.
        State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering.
        Ann Biomed Eng. 2017; 45: 195-209
        • Seol Y.J.
        • Kang H.W.
        • Lee S.J.
        • Atala A.
        • Yoo J.J.
        Bioprinting technology and its applications.
        Eur J Cardiothorac Surg. 2014; 46: 342-348
        • Borovjagin A.V.
        • Ogle B.M.
        • Berry J.L.
        • Zhang J.
        From microscale devices to 3D printing: advances in fabrication of 3D cardiovascular tissues.
        Circ Res. 2017; 120: 150-165
        • Taub R.
        Liver regeneration: from myth to mechanism.
        Nat Rev Mol Cell Biol. 2004; 5: 836
        • Wang X.
        • Yan Y.
        • Pan Y.
        • Xiong Z.
        • Liu H.
        • Cheng J.
        • et al.
        Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system.
        Tissue Eng. 2006; 12: 83-90
        • Robbins J.B.
        • Gorgen V.
        • Min P.
        • Shepherd B.R.
        • Presnell S.C.
        A novel in vitro three-dimensional bioprinted liver tissue system for drug development.
        FASEB J. 2013; 27: 812
        • Gu X.
        Progress and perspectives of neural tissue engineering.
        Front Med. 2015; 9: 401-411
        • Netter F.H.
        Atlas of human anatomy E-book.
        Elsevier Health Sciences, 2017
        • Abbott N.J.
        Astrocyte–endothelial interactions and blood–brain barrier permeability.
        J Anat. 2002; 200: 629-638
        • Lee S.J.
        • Zhu W.
        • Nowicki M.
        • Lee G.
        • Heo D.N.
        • Kim J.
        • et al.
        3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration.
        J Neural Eng. 2018; 15016018
        • Lee S.-J.
        • Esworthy T.
        • Stake S.
        • Miao S.
        • Zuo Y.Y.
        • Harris B.T.
        • et al.
        Advances in 3D bioprinting for neural tissue engineering.
        Adv Biosys. 2018; 21700213
        • Lee S.J.
        • Nowicki M.
        • Harris B.
        • Zhang L.G.
        Fabrication of a highly aligned neural scaffold via a table top stereolithography 3D printing and electrospinning.
        Tissue Eng A. 2017; 23: 491-502
        • Shi Z.
        • Gao H.
        • Feng J.
        • Ding B.
        • Cao X.
        • Kuga S.
        • et al.
        In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration.
        Angew Chem Int Ed Engl. 2014; 53: 5380-5384
        • Heo D.N.
        • Acquah N.
        • Kim J.
        • Lee S.-J.
        • Castro N.J.
        • Zhang L.G.
        Directly induced neural differentiation of human adipose-derived stem cells using three-dimensional culture system of conductive microwell with electrical stimulation.
        Tissue Eng A. 2018; 24: 537-545
        • Naftulin J.S.
        • Kimchi E.Y.
        • Cash S.S.
        Streamlined, inexpensive 3D printing of the brain and skull.
        PloS One. 2015; 10e0136198
        • Lozano R.
        • Stevens L.
        • Thompson B.C.
        • Gilmore K.J.
        • Gorkin 3rd, R.
        • Stewart E.M.
        • et al.
        3D printing of layered brain-like structures using peptide modified gellan gum substrates.
        Biomaterials. 2015; 67: 264-273
        • Xu W.H.
        • Liu J.
        • Li M.L.
        • Sun Z.Y.
        • Chen J.
        • Wu J.H.
        3D printing of intracranial artery stenosis based on the source images of magnetic resonance angiograph.
        Ann Transl Med. 2014; 2: 74
        • Landers R.
        • Hübner U.
        • Schmelzeisen R.
        • Mülhaupt R.
        Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering.
        Biomaterials. 2002; 23: 4437-4447
        • Elvin C.
        • Danon S.
        • Brownlee A.
        • White J.
        • Hickey M.
        • Liyou N.
        • et al.
        Evaluation of photo‐crosslinked fibrinogen as a rapid and strong tissue adhesive.
        J Biomed Mater Res A. 2010; 93: 687-695
        • Khunmanee S.
        • Jeong Y.
        • Park H.
        Crosslinking method of hyaluronic-based hydrogel for biomedical applications.
        J Tissue Eng. 2017; 82041731417726464
        • Childers E.P.
        • Wang M.O.
        • Becker M.L.
        • Fisher J.P.
        • Dean D.
        3D printing of resorbable poly (propylene fumarate) tissue engineering scaffolds.
        MRS Bulletin. 2015; 40: 119-126
        • Chu C.R.
        • Coutts R.D.
        • Yoshioka M.
        • Harwood F.L.
        • Monosov A.Z.
        • Amiel D.
        Articular cartilage repair using allogeneic perichondrocyteseeded biodegradable porous polylactic acid (PLA): a tissue‐engineering study.
        J Biomed Mater Res. 1995; 29: 1147-1154
        • Cutright D.E.
        • Hunsuck E.E.
        Tissue reaction to the biodegradable polylactic acid suture.
        Oral Surg Oral Med Oral Pathol. 1971; 31: 134-139
        • Kweon H.
        • Yoo M.K.
        • Park I.K.
        • Kim T.H.
        • Lee H.C.
        • Lee H.-S.
        • et al.
        A novel degradable polycaprolactone networks for tissue engineering.
        Biomaterials. 2003; 24: 801-808
        • Lee K.-W.
        • Wang S.
        • Lu L.
        • Jabbari E.
        • Currier B.L.
        • Yaszemski M.J.
        Fabrication and characterization of poly (propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding.
        Tissue Eng. 2006; 12: 2801-2811
        • Tessmar J.K.
        • Göpferich A.M.
        Customized PEG‐derived copolymers for tissue‐engineering applications.
        Macromol Biosci. 2007; 7: 23-39
        • Wang Z.
        • Abdulla R.
        • Parker B.
        • Samanipour R.
        • Ghosh S.
        • Kim K.
        A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks.
        Biofabrication. 2015; 7045009
        • Weisel J.W.
        Fibrinogen and fibrin.
        Adv Protein Chem. 2005; 70: 247-299
        • Gao Q.
        • Hu B.
        • Ning Q.
        • Ye C.
        • Xie J.
        • Ye J.
        • et al.
        A primary study of poly (propylene fumarate)–2-hydroxyethyl methacrylate copolymer scaffolds for tarsal plate repair and reconstruction in rabbit eyelids.
        J Mater Chem B. 2015; 3: 4052-4062
        • Lee Y.
        • Chung H.J.
        • Yeo S.
        • Ahn C.-H.
        • Lee H.
        • Messersmith P.B.
        • et al.
        Thermo-sensitive, injectable, and tissue adhesive sol–gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction.
        Soft Matter. 2010; 6: 977-983
        • Suggs L.J.
        • Kao E.Y.
        • Palombo L.L.
        • Krishnan R.S.
        • Widmer M.S.
        • Mikos A.G.
        Preparation and characterization of poly (propylene fumarate-co-ethylene glycol) hydrogels.
        J Biomater Sci Polym Ed. 1998; 9: 653-666
        • Suggs L.J.
        • Krishnan R.S.
        • Garcia C.A.
        • Peter S.J.
        • Anderson J.M.
        • Mikos A.G.
        In vitro and in vivo degradation of poly (propylene fumarate‐co‐ethylene glycol) hydrogels.
        J Biomed Mater Res. 1998; 42: 312-320
        • Bertassoni L.E.
        • Cecconi M.
        • Manoharan V.
        • Nikkhah M.
        • Hjortnaes J.
        • Cristino A.L.
        • et al.
        Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs.
        Lab Chip. 2014; 14: 2202-2211
        • Ye K.
        • Felimban R.
        • Traianedes K.
        • Moulton S.E.
        • Wallace G.G.
        • Chung J.
        • et al.
        Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold.
        PloS One. 2014; 9: e99410
        • Daamen W.F.
        • Veerkamp J.
        • Van Hest J.
        • Van Kuppevelt T.
        Elastin as a biomaterial for tissue engineering.
        Biomaterials. 2007; 28: 4378-4398
        • Kirchmajer D.M.
        • Gorkin III, R.
        An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing.
        J Mater Chem B. 2015; 3: 4105-4117
        • Fan R.
        • Piou M.
        • Darling E.
        • Cormier D.
        • Sun J.
        • Wan J.
        Bio-printing cell-laden Matrigel–agarose constructs.
        J Biomater Appl. 2016; 31: 684-692