Advertisement

3D bioprinting for lungs and hollow organs

      Three-dimensional bioprinting has been gaining attention as a potential method for creating biological tissues, supplementing the current arsenal of tissue engineering techniques. 3D bioprinting raises the possibility of reproducibly creating complex macro- and microscale architectures using multiple different cell types. This is promising for creation of multilayered hollow organs, which has been challenging using more traditional tissue engineering techniques. In this review, the state of the field in bioprinting of epithelialized hollow and tubular organs is discussed. Most of the progress for the pulmonary system has been restricted to the trachea. Due to the gross structural similarities and common engineering challenges when creating any epithelialized hollow organ, this review also covers current progress in printing within the gastrointestinal and genitourinary systems, as well as applications of traditional plastic printing in engineering these tissues.

      Abbreviations:

      ECM (extracellular matrix), GelMA (gelatin methacrylate), hIEC (human intestinal epithelial cell), hTMSC (human turbinate mesenchymal stromal cell), MSC (mesenchymal stem/stromal cell), PCL (polycaprolactone), PEG (polyethylene glycol), PLA (polylactic acid), PLCL (poly(lactide-co-caprolactone)), SMC (smooth muscle cell), UC (urothelial cell), TGF-β1 (transforming growth factor beta 1)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Naveau A.
        • Smirani R.
        • Catros S.
        • de Oliveira H.
        • Fricain J.-C.
        • Devillard R
        A bibliometric study to assess bioprinting evolution.
        Appl Sci. 2017; 7: 1331https://doi.org/10.3390/app7121331
        • Derakhshanfar S.
        • Mbeleck R.
        • Xu K.
        • Zhang X.
        • Zhong W.
        • Xing M.
        3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances.
        Bioact Mater. 2018; 3: 144-156https://doi.org/10.1016/j.bioactmat.2017.11.008
        • Bishop E.S.
        • Mostafa S.
        • Pakvasa M.
        • et al.
        3-D bioprinting technologies in tissue engineering and regenerative medicine: current and future trends.
        Genes Dis. 2017; 4: 185-195https://doi.org/10.1016/j.gendis.2017.10.002
        • Tasoglu S.
        • Demirci U.
        Bioprinting for stem cell research.
        Trends Biotechnol. 2013; 31: 10-19https://doi.org/10.1016/j.tibtech.2012.10.005
        • Price A.P.
        • England K.a
        • Matson A.M.
        • Blazar B.R.
        • Panoskaltsis-Mortari A.
        Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded.
        Tissue Eng Part A. 2010; 16: 2581-2591https://doi.org/10.1089/ten.tea.2009.0659
        • Gilpin S.E.
        • Guyette J.P.
        • Gonzalez G.
        • et al.
        Perfusion decellularization of human and porcine lungs : bringing the matrix to clinical scale.
        J Hear Lung Transplant. 2014; 33: 298-308https://doi.org/10.1016/j.healun.2013.10.030
        • Petersen T.H.
        • Calle E.A.
        • Colehour M.B.
        • Niklason L.E.
        Matrix composition and mechanics of decellularized lung scaffolds.
        Cells Tissues Organs. 2012; 195: 222-231https://doi.org/10.1159/000324896
        • Bonvillain R.W.
        • Danchuk S.
        • Sullivan D.E.
        • et al.
        A nonhuman primate model of lung regeneration: detergent-mediated decellularization and initial in vitro recellularization with mesenchymal stem cells.
        Tissue Eng Part A. 2012; 18: 2437-2452https://doi.org/10.1089/ten.tea.2011.0594
        • Ott H.C.
        • Clippinger B.
        • Conrad C.
        • et al.
        Regeneration and orthotopic transplantation of a bioartificial lung.
        Nat Med. 2010; 16: 927-933https://doi.org/10.1038/nm.2193
        • Levitzky M.G.
        Chapter 1. Function and Structure of the Respiratory System.
        Pulmonary Physiology. The McGraw-Hill Companies, New York, NY2013 (8e)
        • Ochs M.
        • Nyengaard J.R.
        • Jung A.
        • et al.
        The number of alveoli in the human lung.
        Am J Respir Crit Care Med. 2004; 169: 120-124https://doi.org/10.1164/rccm.200308-1107OC
        • Makanya A.
        • Anagnostopoulou A.
        • Djonov V.
        Development and remodeling of the vertebrate blood-gas barrier.
        Biomed Res Int. 2013; 2013: 1-15https://doi.org/10.1155/2013/101597
        • Mercer R.R.
        • Russell M.L.
        • Crapo J.D.
        Alveolar septal structure in different species.
        J Appl Physiol. 1994; 77: 1060-1066https://doi.org/10.1152/jappl.1994.77.3.1060
        • Chang M.M.-J.
        • Shih L.
        • Wu R.
        Pulmonary epithelium: cell types and functions.
        The Pulmonary Epithelium in Health and Disease. John Wiley & Sons, Ltd, Chichester, UK2008: 1-26
        • Walker C.M.
        • Rosado-de-Christenson M.L.
        • Martínez-Jiménez S.
        • Kunin J.R.
        • Wible B.C.
        Bronchial arteries: anatomy, function, hypertrophy, and anomalies.
        RadioGraphics. 2015; 35: 32-49https://doi.org/10.1148/rg.351140089
        • Culver B.H.
        • Glenny R.W
        Pulmonary circulation.
        Clinical Respiratory Medicine. Elsevier, 2012: 29-36
        • Datta P.
        • Ayan B.
        • Ozbolat I.T.
        Bioprinting for vascular and vascularized tissue biofabrication.
        Acta Biomater. 2017; 51: 1-20https://doi.org/10.1016/j.actbio.2017.01.035
        • Holbert J.M.
        • Strollo D.C.
        Imaging of the normal trachea.
        J Thorac Imaging. 1995; 10: 171-179
        • Reid L.
        Visceral cartilage.
        J Anat. 1976; 122: 349-355
        • Hyde D.M.
        • Hamid Q.
        • Irvin C.G.
        Anatomy, pathology, and physiology of the tracheobronchial tree: emphasis on the distal airways.
        J Allergy Clin Immunol. 2009; 124: S72-S77https://doi.org/10.1016/j.jaci.2009.08.048
        • Kaye R.
        • Goldstein T.
        • Grande D.A.
        • Zeltsman D.
        • Smith L.P
        A 3-dimensional bioprinted tracheal segment implant pilot study: rabbit tracheal resection with graft implantation.
        Int J Pediatr Otorhinolaryngol. 2019; 117: 175-178https://doi.org/10.1016/j.ijporl.2018.11.010
        • Rutgers M.
        • van Pelt M.J.
        • Dhert W.J.A.
        • Creemers L.B.
        • Saris D.B.F.
        Review evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage.
        Osteoarthr Cartil. 2010; 18: 12-23https://doi.org/10.1016/j.joca.2009.08.009
        • Bae S.
        • Lee K.-W.
        • Park J.
        • et al.
        3D bioprinted artificial trachea with epithelial cells and chondrogenic-differentiated bone marrow-derived mesenchymal stem cells.
        Int J Mol Sci. 2018; 19: 1624https://doi.org/10.3390/ijms19061624
        • Park J.-H.
        • Yoon J.-K.
        • Lee J.B.
        • et al.
        Experimental tracheal replacement using 3-dimensional bioprinted artificial trachea with autologous epithelial cells and chondrocytes.
        Sci Rep. 2019; 9: 2103https://doi.org/10.1038/s41598-019-38565-z
        • Taniguchi D.
        • Matsumoto K.
        • Tsuchiya T.
        • et al.
        Scaffold-free trachea regeneration by tissue engineering with bio-3D printing†.
        Interact Cardiovasc Thorac Surg. 2018; 26: 745-752https://doi.org/10.1093/icvts/ivx444
        • Machino R.
        • Matsumoto K.
        • Taniguchi D.
        • et al.
        Replacement of rat tracheas by layered, trachea-like, scaffold-free structures of human cells using a bio-3D printing system.
        Adv Healthc Mater. 2019; 1800983https://doi.org/10.1002/adhm.201800983
        • Hinton T.J.
        • Jallerat Q.
        • Palchesko R.N.
        • et al.
        Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels.
        Sci Adv. 2015; 1e1500758https://doi.org/10.1126/sciadv.1500758
        • Park J.H.
        • Hong J.M.
        • Ju Y.M.
        • et al.
        A novel tissue-engineered trachea with a mechanical behavior similar to native trachea.
        Biomaterials. 2015; 62: 106-115https://doi.org/10.1016/j.biomaterials.2015.05.008
        • Park J.H.
        • Park J.Y.
        • Nam I.-C.
        • et al.
        Human turbinate mesenchymal stromal cell sheets with bellows graft for rapid tracheal epithelial regeneration.
        Acta Biomater. 2015; 25: 56-64https://doi.org/10.1016/j.actbio.2015.07.014
        • Goldstein T.A.
        • Smith B.D.
        • Zeltsman D.
        • Grande D.
        • Smith L.P.
        Introducing a 3-dimensionally printed, tissue-engineered graft for airway reconstruction.
        Otolaryngol Neck Surg. 2015; 153: 1001-1006https://doi.org/10.1177/0194599815605492
        • Rehmani S.S.
        • Al-Ayoubi A.M.
        • Ayub A.
        • et al.
        Three-dimensional-printed bioengineered tracheal grafts: preclinical results and potential for human use.
        Ann Thorac Surg. 2017; 104: 998-1004https://doi.org/10.1016/j.athoracsur.2017.03.051
        • Townsend J.M.
        • Ott L.M.
        • Salash J.R.
        • et al.
        Reinforced electrospun polycaprolactone nanofibers for tracheal repair in an in vivo ovine model.
        Tissue Eng Part A. 2018; 24: 1301-1308https://doi.org/10.1089/ten.tea.2017.0437
        • Hinton T.J.
        • Lee A.
        • Feinberg A.W.
        3D bioprinting from the micrometer to millimeter length scales: Size does matter.
        Curr Opin Biomed Eng. 2017; 1: 31-37https://doi.org/10.1016/j.cobme.2017.02.004
        • Horváth L.
        • Umehara Y.
        • Jud C.
        • Blank F.
        • Petri-Fink A.
        • Rothen-Rutishauser B.
        Engineering an in vitro air-blood barrier by 3D bioprinting.
        Sci Rep. 2015; 5: 7974https://doi.org/10.1038/srep07974
        • Lin N.Y.C.
        • Homan K.A.
        • Robinson S.S.
        • et al.
        Renal reabsorption in 3D vascularized proximal tubule models.
        Proc Natl Acad Sci. 2019; 116: 5399-5404https://doi.org/10.1073/pnas.1815208116
        • Grigoryan B.
        • Paulsen S.
        • Corbett D.
        • et al.
        Functional intravascular topologies and multivascular networks within biocompatible hydrogels.
        Science. 2019; 464: 458-464
        • Lewis K.J.R.
        • Tibbitt M.W.
        • Zhao Y.
        • et al.
        In vitro model alveoli from photodegradable microsphere templates.
        Biomater Sci. 2015; 3: 821-832https://doi.org/10.1039/C5BM00034C
        • Xia F.
        • Mao J.
        • Ding J.
        • Yang H.
        Observation of normal appearance and wall thickness of esophagus on CT images.
        Eur J Radiol. 2019; 72: 406-411
        • Park S.Y.
        • Choi J.W.
        • Park J.-K.
        • et al.
        Tissue-engineered artificial oesophagus patch using three-dimensionally printed polycaprolactone with mesenchymal stem cells: a preliminary report.
        Interact Cardiovasc Thorac Surg. 2016; 22: 712-717https://doi.org/10.1093/icvts/ivw048
        • Samsonraj R.M.
        • Raghunath M.
        • Nurcombe V.
        • Hui J.H.
        • van Wijnen A.J.
        • Cool S.M.
        Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine.
        Stem Cells Transl Med. 2017; 6: 2173-2185https://doi.org/10.1002/sctm.17-0129
        • Chung E.-J.
        • Ju H.W.
        • Yeon Y.K.
        • et al.
        Development of an omentum-cultured oesophageal scaffold reinforced by a 3D-printed ring: feasibility of an in vivo bioreactor.
        Artif Cells, Nanomed Biotechnol. 2018; 46: 885-895https://doi.org/10.1080/21691401.2018.1439039
        • Domingos M.
        • Intranuovo F.
        • Gloria A.
        • et al.
        Improved osteoblast cell affinity on plasma-modified 3-D extruded PCL scaffolds.
        Acta Biomater. 2013; 9: 5997-6005
        • Santiago L.Y.
        • Nowak R.W.
        • Peter Rubin J.
        • Marra K.G.
        Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications.
        Biomaterials. 2006; 27: 2962-2969
        • Madden L.R.
        • Nguyen T.V
        • Garcia-Mojica S.
        • et al.
        Bioprinted 3D primary human intestinal tissues model aspects of native physiology and ADME/Tox functions.
        iScience. 2018; 2: 156-167
        • Yan M.
        • Lewis P.L.
        • Shah R.N.
        Tailoring nanostructure and bioactivity of 3d-printable hydrogels with self-assemble peptides amphiphile (pa) for promoting bile duct formation.
        Biofabrication. 2018; 10: 035010
        • Griffiths D.J.
        Flow of urine through the ureter: a collapsible, muscular tube undergoing peristalsis.
        J Biomech Eng. 1989; 111: 206-211
        • Polák Š.
        • Žiaran S.
        • Mištinová J.
        • Bevízová K.
        • Danišovič Ľ.
        • Varga I.
        Options for histological study of the structure and ultrastructure of human urinary bladder epithelium.
        Biologia (Bratisl). 2012; 67: 1018-1025https://doi.org/10.2478/s11756-012-0090-1
        • Ovalle W.K.
        • Nahirney P.C.
        Netter's Essential Histology.
        Saunders, 2013: 357-380
        • Lam Van Ba O.
        • Aharony S.
        • Loutochin O.
        • Corcos J
        Bladder tissue engineering: a literature review.
        Adv Drug Deliv Rev. 2015; 82–83: 31-37
        • Sloff M.
        • Simaioforidis V.
        • de Vries R.
        • Oosterwijk E.
        • Feitz W.
        Tissue engineering of the bladder–reality or myth? A systematic review.
        J Urol. 2014; 192: 1035-1042
        • Zhang K.
        • Fu Q.
        • Yoo J.
        • et al.
        3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment.
        Acta Biomater. 2017; 50: 154-164
        • Pi Q.
        • Maharjan S.
        • Yan X.
        • et al.
        Digitally tunable microfluidic bioprinting of multilayered cannular tissues.
        Adv Mater. 2018; 301706913
        • Imamura T.
        • Shimamura M.
        • Ogawa T.
        • et al.
        Biofabricated structures reconstruct functional urinary bladders in radiation-injured rat bladders.
        Tissue Eng Part A. 2018; 24: 1574-1587
        • Panoskaltsis-Mortari A.
        Bioreactor development for lung tissue engineering.
        Curr Transplant Rep. 2015; 2: 90-97https://doi.org/10.1007/s40472-014-0048-z