Advertisement
Review Article| Volume 213, P23-49, November 2019

Biosensors for Detection of Human Placental Pathologies: A Review of Emerging Technologies and Current Trends

  • Author Footnotes
    1 These two authors contribute equally to this paper.
    Jia Liu
    Footnotes
    1 These two authors contribute equally to this paper.
    Affiliations
    College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida
    Search for articles by this author
  • Author Footnotes
    1 These two authors contribute equally to this paper.
    Babak Mosavati
    Footnotes
    1 These two authors contribute equally to this paper.
    Affiliations
    College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida
    Search for articles by this author
  • Andrew V. Oleinikov
    Affiliations
    Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida
    Search for articles by this author
  • E. Du
    Correspondence
    Reprint requests: E. Du, PhD, Department of Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL 33431, USA, Phone: 1(561) 297-3441.
    Affiliations
    College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida

    Charles E. Schmidt College of Science, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida
    Search for articles by this author
  • Author Footnotes
    1 These two authors contribute equally to this paper.
      Substantial growth in the biosensor research has enabled novel, sensitive and point-of-care diagnosis of human diseases in the last decade. This paper presents an overview of the research in the field of biosensors that can potentially predict and diagnosis of common placental pathologies. A survey of biomarkers in maternal circulation and their characterization methods is presented, including markers of oxidative stress, angiogenic factors, placental debris, and inflammatory biomarkers that are associated with various pathophysiological processes in the context of pregnancy complications. Novel biosensors enabled by microfluidics technology and nanomaterials is then reviewed. Representative designs of plasmonic and electrochemical biosensors for highly sensitive and multiplexed detection of biomarkers, as well as on-chip sample preparation and sensing for automatic biomarker detection are illustrated. New trends in organ-on-a-chip based placental disease models are highlighted to illustrate the capability of these in vitro disease models in better understanding the complex pathophysiological processes, including mass transfer across the placental barrier, oxidative stress, inflammation, and malaria infection. Biosensor technologies that can be potentially embedded in the placental models for real time, label-free monitoring of these processes and events are suggested. Merger of cell culture in microfluidics and biosensing can provide significant potential for new developments in advanced placental models, and tools for diagnosis, drug screening and efficacy testing.

      Abbreviations:

      CSA (chondroitin sulfate A), ELISA (enzyme-linked immunosorbent assay), EV (extracellular vesicle), fnRBC (fetal nucleated red blood cell), GDM (gestational diabetes mellitus), hCG (human chorionic gonadotropin), IE (Plasmodium falciparum-infected erythrocytes), HPLC (high-performance liquid chromatography), IFN (interferon), IUGR (intrauterine growth restriction), MDA (malondialdehyde), NPs (nanoparticles), OS (oxidative stress), PAPP-A (pregnancy-associated plasma protein A), PE (preeclampsia), PlGF (placental growth factor), PM (placental malaria), PP-13 (placental tissue protein 13), QCM (quartz crystal microbalance), sENG (soluble endoglin), sFlt-1 (soluble VEGF receptor - 1), SPR (surface plasmon resonance), SERS (surface-enhanced plasmon resonance), TNF (tumor necrosis factor), TRPS (tunable resistive pulse sensing), VEGF (vascular endothelial growth factor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Linzer D.I.
        • Fisher S.J.
        The placenta and the prolactin family of hormones: regulation of the physiology of pregnancy.
        Mol. Endocrinol. 1999; 13: 837-840
        • Odegard R.A.
        • Vatten L.J.
        • Nilsen S.T.
        • Salvesen K.A.
        • Austgulen R.
        Preeclampsia and fetal growth.
        Obstet Gynecol. 2000; 96: 950-955
        • Landis S.
        • Lokomba V.
        • Ananth C.
        • et al.
        Impact of maternal malaria and under-nutrition on intrauterine growth restriction: a prospective ultrasound study in Democratic Republic of Congo.
        Epidemiol Infect. 2009; 137: 294-304
        • Zhang H.
        • Zhang J.
        • Pope C.F.
        • et al.
        Gestational diabetes mellitus resulting from impaired beta-cell compensation in the absence of FoxM1, a novel downstream effector of placental lactogen.
        Diabetes. 2010; 59: 143-152
        • Bhansali K.
        • Eugere E.
        Quantitative determination of 17 beta-estradiol and progesterone in cellular fractions of term placentae of normal and hypertensive patients.
        Res Commun Chem Pathol Pharmacol. 1992; 77: 161-169
        • Branisteanu D.D.
        • Mathieu C.
        Progesterone in gestational diabetes mellitus: guilty or not guilty?.
        Trends Endocrinol Metab: TEM. 2003; 14: 54-56
        • Qi X.
        • Gong B.
        • Yu J.
        • et al.
        Decreased cord blood estradiol levels in related to mothers with gestational diabetes.
        Medicine. 2017; 96: e6962
        • Acikgoz S.
        • Bayar U.O.
        • Can M.
        • et al.
        Levels of oxidized LDL, estrogens, and progesterone in placenta tissues and serum paraoxonase activity in preeclampsia.
        Mediat Inflamm. 2013; 2013862982
        • Al-Badri M.R.
        • Zantout M.S.
        • Azar S.T.
        The role of adipokines in gestational diabetes mellitus.
        Ther Adv Endocrinol Metab. 2015; 6: 103-108
        • Alsat E.
        • Guibourdenche J.
        • Couturier A.
        • Evain-Brion D.
        Physiological role of human placental growth hormone.
        Mol Cell Endocrinol. 1998; 140: 121-127
        • Mittal P.
        • Espinoza J.
        • Hassan S.
        • et al.
        Placental growth hormone is increased in the maternal and fetal serum of patients with preeclampsia.
        J Maternal-Fetal Neonatal Med. 2007; 20: 651-659
        • Napso T.
        • Yong H.E.J.
        • Lopez-Tello J.
        • Sferruzzi-Perri A.N.
        The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation.
        Front Physiol. 2018; 9: 1091
        • Costa M.A.
        The endocrine function of human placenta: an overview.
        Reprod Biomed Online. 2016; 32: 14-43
        • Thévenot D.R.
        • Toth K.
        • Durst R.A.
        • Wilson G.S.
        Electrochemical biosensors: recommended definitions and classification.
        Anal Lett. 2001; 34: 635-659
        • Yoon J.-Y.
        Spectrophotometry and optical biosensor. Introduction to biosensors.
        Springer, 2013: 121-139
        • Perumal V.
        • Hashim U.
        Advances in biosensors: principle, architecture and applications.
        J Appl Biomed. 2014; 12: 1-15
        • Borisov S.M.
        • Wolfbeis O.S.
        Optical biosensors.
        Chem Rev. 2008; 108: 423-461
        • Simeonov A.
        • Nikiforov T.T.
        Single nucleotide polymorphism genotyping using short, fluorescently labeled locked nucleic acid (LNA) probes and fluorescence polarization detection.
        Nucleic Acids Res. 2002; 30 (e91-e)
        • Liu Q.
        • Wang P.
        Cell-based biosensors: principles and applications.
        Artech House. 2009;
      1. Turner A. Approaches to allergy detection using aptasensors. 2007.

        • Schneider H.-J.
        • Lim S.
        • Strongin R.M.
        Biomimetic synthetic receptors as molecular recognition elements.
        Recognition receptors in biosensors. Springer, 2010: 777-816
        • Morrison D.W.
        • Dokmeci M.R.
        • Demirci U.
        • Khademhosseini A.
        Clinical applications of micro-and nanoscale biosensors.
        John Wiley & Sons, Inc., Hoboken, NJ, USA2007
        • Preechaburana P.
        • Suska A.
        • Filippini D.
        Biosensing with cell phones.
        Communication. 2014; 32: 351-355
        • Abbaspour A.
        • Khajehzadeh A.
        • Ghaffarinejad A.
        A simple and cost-effective method, as an appropriate alternative for visible spectrophotometry: development of a dopamine biosensor.
        Analyst. 2009; 134: 1692-1698
        • Unser S.
        • Bruzas I.
        • He J.
        • Sagle L.
        Localized surface plasmon resonance biosensing: current challenges and approaches.
        Sensors. 2015; 15: 15684-15716
        • Mahmoudpour M.
        • Dolatabadi J.E.N.
        • Torbati M.
        • Homayouni-Rad A.
        Nanomaterials based surface plasmon resonance signal enhancement for detection of environmental pollutions.
        Biosen Bioelectron. 2018; 127: 72-84
        • Pimková K.
        • Bocková M.
        • Hegnerová K.
        • et al.
        Surface plasmon resonance biosensor for the detection of VEGFR-1—a protein marker of myelodysplastic syndromes.
        Anal Bioanal Chem. 2012; 402: 381-387
        • Khansili N.
        • Rattu G.
        • Krishna P.M.
        Label-free optical biosensors for food and biological sensor applications.
        Sens Actuators B: Chem. 2018; 265: 35-49
        • Laing S.
        • Jamieson L.E.
        • Faulds K.
        • Graham D.
        Surface-enhanced Raman spectroscopy for in vivo biosensing.
        Nat Rev Chem. 2017; 1: 1-7
        • Noble J.
        • Attree S.
        • Horgan A.
        • et al.
        Optical scattering artifacts observed in the development of multiplexed surface enhanced Raman spectroscopy nanotag immunoassays.
        Anal Chem. 2012; 84: 8246-8252
        • Chon H.
        • Lee S.
        • Yoon S.Y.
        • Lee E.K.
        • Chang S.I.
        • Choo J.
        SERS-based competitive immunoassay of troponin I and CK-MB markers for early diagnosis of acute myocardial infarction.
        Chem Commun. 2014; 50: 1058-1060
        • Zhang D.
        • Huang L.
        • Liu B.
        • et al.
        Quantitative and ultrasensitive detection of multiplex cardiac biomarkers in lateral flow assay with core-shell SERS nanotags.
        Biosens Bioelectron. 2018; 106: 204-211
        • Tian F.R.
        • Conde J.
        • Bao C.C.
        • Chen Y.S.
        • Curtin J.
        • Cui D.X.
        Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging.
        Biomaterials. 2016; 106: 87-97
        • Shen M.-Y.
        • Li B.-R.
        • Li Y.-K.
        Silicon nanowire field-effect-transistor based biosensors: from sensitive to ultra-sensitive.
        Biosens Bioelectron. 2014; 60: 101-111
        • Wu L.
        • Xiong E.
        • Zhang X.
        • Zhang X.
        • Chen J.
        Nanomaterials as signal amplification elements in DNA-based electrochemical sensing.
        Nano Today. 2014; 9: 197-211
        • Moore T.J.
        • Moody A.S.
        • Payne T.D.
        • Sarabia G.M.
        • Daniel A.R.
        • Sharma B.
        In vitro and in vivo SERS biosensing for disease diagnosis.
        Biosensors-Basel. 2018; 8: 1-25
        • Luo X.
        • Davis J.J.
        Electrical biosensors and the label free detection of protein disease biomarkers.
        Chem Soc Rev. 2013; 42: 5944-5962
        • Liu S.
        • Guo X.
        Carbon nanomaterials field-effect-transistor-based biosensors.
        NPG Asia Mater. 2012; 4: e23
        • Park J.-W.
        • Kallempudi S.S.
        • Niazi J.H.
        • et al.
        Rapid and sensitive detection of Nampt (PBEF/visfatin) in human serum using an ssDNA aptamer-based capacitive biosensor.
        Biosens Bioelectron. 2012; 38: 233-238
        • Daniels J.S.
        • Pourmand N.
        Label-Free Impedance biosensors: opportunities and challenges.
        Electroanalysis. 2007; 19: 1239-1257
        • Xu Y.C.
        • Xie X.W.
        • Duan Y.
        • Wang L.
        • Cheng Z.
        • Cheng J.
        A review of impedance measurements of whole cells.
        Biosens Bioelectron. 2016; 77: 824-836
        • Du E.
        • Ha S.
        • Diez-Silva M.
        • Dao M.
        • Suresh S.
        • Chandrakasan A.P.
        Electric impedance microflow cytometry for characterization of cell disease states.
        Lab Chip. 2013; 13: 3903-3909
        • Sowerby S.J.
        • Broom M.F.
        • Petersen G.B.
        Dynamically resizable nanometre-scale apertures for molecular sensing.
        Sens Actuators B: Chem. 2007; 123: 325-330
        • Vogel R.
        • Willmott G.
        • Kozak D.
        • et al.
        Quantitative Sizing of nano/microparticles with a tunable elastomeric pore sensor.
        Anal Chem. 2011; 83: 3499-3506
        • Akers J.C.
        • Ramakrishnan V.
        • Nolan J.P.
        • et al.
        Comparative analysis of technologies for quantifying extracellular vesicles (EVs) in clinical cerebrospinal fluids (CSF).
        PLoS One. 2016; 11: e0149866
        • Momen-Heravi F.
        • Balaj L.
        • Alian S.
        • et al.
        Alternative methods for characterization of extracellular vesicles.
        Front Physiol. 2012; 3: 1-8
        • Fang C.
        • He J.
        • Chen Z.J.S.
        • Chemical A.B.
        A disposable amperometric biosensor for determining total cholesterol in whole blood.
        Sensors Actuators B: Chem. 2011; 155: 545-550
        • Wang Y.
        • Xu H.
        • Zhang J.
        • Li G.
        Electrochemical sensors for clinic analysis.
        Sensors. 2008; 8: 2043-2081
        • Grieshaber D.
        • MacKenzie R.
        • Voeroes J.
        • Reimhult E.
        Electrochemical biosensors-sensor principles and architectures.
        Sensors. 2008; 8: 1400-1458
        • Monošík R.
        • Stred'anský M.
        • Šturdík E.
        Application of electrochemical biosensors in clinical diagnosis.
        J Clin Lab Anal. 2012; 26: 22-34
        • Koncki R.
        Recent developments in potentiometric biosensors for biomedical analysis.
        Anal Chim Acta. 2007; 599: 7-15
        • Länge K.
        • Rapp B.E.
        • Rapp M.
        Surface acoustic wave biosensors: a review.
        Anal Bioanal Chem. 2008; 391: 1509-1519
        • Arruda D.L.
        • Wilson W.C.
        • Nguyen C.
        • et al.
        Microelectrical sensors as emerging platforms for protein biomarker detection in point-of-care diagnostics.
        Expert Rev Mol Diagn. 2009; 9: 749-755
        • Vigneshvar S.
        • Sudhakumari C.
        • Senthilkumaran B.
        • Prakash H.
        Recent advances in biosensor technology for potential applications–an overview.
        Front Bioeng Biotechnol. 2016; 4: 11
        • Kabir K.
        • Ippolito S.J.
        • Sabri Y.M.
        • Harrison C.J.
        • Matthews G.
        • Bhargava S.K.
        A comparison of Surface Acoustic Wave (SAW) and Quartz Crystal Microbalance (QCM) based sensors for portable, online mercury vapour sensing.
        in: Chemeca 2014: Processing excellence; Powering our future. 2014: 1402
        • Dai Z.
        • Yan F.
        • Chen J.
        • Ju H.
        Reagentless amperometric immunosensors based on direct electrochemistry of horseradish peroxidase for determination of carcinoma antigen-125.
        Anal Chem. 2003; 75: 5429-5434
        • Wilson M.S.
        • Rauh R.D.
        Novel amperometric immunosensors based on iridium oxide matrices.
        Biosens Bioelectron. 2004; 19: 693-699
        • Putzbach W.
        • Ronkainen N.J.
        Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review.
        Sensors. 2013; 13: 4811-4840
        • Fruscalzo A.
        • Londero A.
        • Biasizzo J.
        • et al.
        Second trimester amniotic fluid retinol in patients developing preeclampsia.
        Arch Gynecol Obstet. 2015; 291: 831-836
        • Zusterzeel P.L.M.
        • Mulder T.P.J.
        • Peters W.H.M.
        • Wiseman S.A.
        • Steegers E.A.P.
        Plasma protein carbonyls in nonpregnant, healthy pregnant and preeclamptic women.
        Free Radical Res. 2000; 33: 471-476
        • Mehmetoglu I.
        • Kurban S.
        • Toker A.
        • et al.
        Serum ischemia‐modified albumin and oxidized LDL in cord blood and serum of neonates born to pre‐eclamptic mothers.
        Pediatrics Int. 2015; 57: 422-426
        • Hsieh Ts-Ta
        • Chen S.-F.
        • Lo L.-M.
        • Li M.-J.
        • Yeh Y.-L.
        • Hung T.-H.
        The association between maternal oxidative stress at mid-gestation and subsequent pregnancy complications.
        Reprod Sci. 2012; 19: 505-512
        • Wang Y.
        • Walsh S.W.
        Increased superoxide generation is associated with decreased superoxide dismutase activity and mRNA expression in placental trophoblast cells in pre-eclampsia.
        Placenta. 2001; 22: 206-212
        • Megnekou R.
        • Djontu J.C.
        • Bigoga J.D.
        • Medou F.M.
        • Tenou S.
        • Lissom A.
        Impact of placental Plasmodium falciparum malaria on the profile of some oxidative stress biomarkers in women living in Yaoundé.
        Cameroon. PLoS One. 2015; 10e0134633
        • Karowicz-Bilinska A.
        • Kędziora-Kornatowska K.
        • Bartosz G.
        Indices of oxidative stress in pregnancy with fetal growth restriction.
        Free Radical Res. 2007; 41: 870-873
        • Saker M.
        • Mokhtari N.S.
        • Merzouk S.A.
        • Merzouk H.
        • Belarbi B.
        • Narce M.
        Oxidant and antioxidant status in mothers and their newborns according to birthweight.
        Eur J Obstet Gyn R B. 2008; 141: 95-99
        • Aydemir B.
        • Baykara O.
        • Cinemre F.B.S.
        • et al.
        LOX-1 gene variants and maternal levels of plasma oxidized LDL and malondialdehyde in patients with gestational diabetes mellitus.
        Arch Gynecol Obstet. 2016; 293: 517-527
        • Suman P.
        • Gandhi S.
        • Kumar P.
        • Garg K.
        Prospects of electrochemical immunosensors for early diagnosis of preeclampsia.
        Am J Reprod Immunol. 2017; 77: e12584
        • Gelisgen R.
        • Genc H.
        • Kayali R.
        • et al.
        Protein oxidation markers in women with and without gestational diabetes mellitus: a possible relation with paraoxonase activity.
        Diabetes Res Clin Pr. 2011; 94: 404-409
        • Maisonneuve E.
        • Delvin E.
        • Ouellet A.
        • et al.
        Oxidative conditions prevail in severe IUGR with vascular disease and Doppler anomalies.
        J Maternal-Fetal Neonatal Med. 2015; 28: 1471-1475
        • Sahai K.
        • Saraswathy S.
        • Yadav T.P.
        • Arora D.
        • Krishnan M.
        Pre-eclampsia: Molecular events to biomarkers.
        Med J Armed Forces India. 2017; 73: 167-174
        • Qiu C.
        • Hevner K.
        • Abetew D.
        • Enquobahrie D.A.
        • Williams M.A.
        Oxidative DNA damage in early pregnancy and risk of gestational diabetes mellitus: a pilot study.
        Clin Biochem. 2011; 44: 804-808
        • Yagi K.
        A simple fluorometric assay for lipoperoxide in blood plasma.
        Biochem Med. 1976; 15: 212-216
        • Moselhy H.F.
        • Reid R.G.
        • Yousef S.
        • Boyle S.P.
        A specific, accurate, and sensitive measure of total plasma malondialdehyde by HPLC.
        J Lipid Res. 2013; 54: 852-858
        • Wang J.
        • Jiang Z.
        • Xie L.
        • Liu M.
        • Yuan Y.
        Determination of the activity of superoxide dismutase using a glassy carbon electrode modified with ferrocene imidazolium salts and hydroxy-functionalized graphene.
        Microchim Acta. 2017; 184: 289-296
        • Santharaman P.
        • Das M.
        • Singh S.K.
        • et al.
        Label-free electrochemical immunosensor for the rapid and sensitive detection of the oxidative stress marker superoxide dismutase 1 at the point-of-care.
        Sens Actuators B: Chem. 2016; 236: 546-553
        • Nam S.
        • Lee W.-Y.
        Electrogenerated chemiluminescence of lucigenin at mesoporous platinum electrode and its biosensing application to superoxide dismutase.
        J Electroanal Chem. 2018; 808: 59-64
        • Saqib M.
        • Bashir S.
        • Li H.
        • Wang S.-s.
        • Jin Y.
        Lucigenin-tris (2-carboxyethyl) phosphine chemiluminescence for selective and sensitive detection of TCEP, superoxide dismutase, mercury (II), and dopamine.
        Anal Chem. 2019; 91: 3070-3077
        • Saqib M.
        • Qi L.
        • Hui P.
        • et al.
        Development of luminol-N-hydroxyphthalimide chemiluminescence system for highly selective and sensitive detection of superoxide dismutase, uric acid and Co2+.
        Biosens. Bioelectron. 2018; 99: 519-524
        • Cao H.
        • Yu F.
        • Zhao Y.
        • et al.
        Stretchable electrochemical impedance sensors for intravascular detection of lipid-rich lesions in New Zealand White rabbits.
        Biosens Bioelectron. 2014; 54: 610-616
        • Gaus K.
        • Hall E.A.
        Detection of oxidized low-density lipoproteins using surface plasmon resonance.
        Anal Chem. 1999; 71: 2459-2467
        • Zhang D.
        • Haputhanthri R.
        • Ansar S.M.
        • et al.
        Ultrasensitive detection of malondialdehyde with surface-enhanced Raman spectroscopy.
        Anal Bioanal Chem. 2010; 398: 3193-3201
        • Widmer M.
        • Cuesta C.
        • Khan K.S.
        • et al.
        Accuracy of angiogenic biomarkers at ⩽20 weeks’ gestation in predicting the risk of pre-eclampsia: a WHO multicentre study.
        Pregnancy Hypertension. 2015; 5: 330-338
        • Reis F.M.
        • D'antona D.
        • Petraglia F.
        Predictive value of hormone measurements in maternal and fetal complications of pregnancy.
        Endocrine Rev. 2002; 23: 230-257
        • Wortelboer E.
        • Koster M.
        • Cuckle H.
        • Stoutenbeek P.
        • Schielen P.
        • Visser G.
        First‐trimester placental protein 13 and placental growth factor: markers for identification of women destined to develop early‐onset pre‐eclampsia.
        BJOG: an Int J Obstet Gynaecol. 2010; 117: 1384-1389
        • Staff A.C.
        Circulating predictive biomarkers in preeclampsia.
        Pregnancy Hypertension. 2011; 1: 28-42
        • Burger O.
        • Pick E.
        • Zwickel J.
        • et al.
        Placental protein 13 (PP-13): effects on cultured trophoblasts, and its detection in human body fluids in normal and pathological pregnancies.
        Placenta. 2004; 25: 608-622
        • Zhang F.
        • Xiao X.
        • Liu D.
        • Dong X.
        • Sun J.
        • Zhang X.
        Increased cord blood angiotensin II concentration is associated with decreased insulin sensitivity in the offspring of mothers with gestational diabetes mellitus.
        J Perinatol. 2013; 33: 9
        • D'antonio F.
        • Rijo C.
        • Thilaganathan B.
        • et al.
        Association between first‐trimester maternal serum pregnancy‐associated plasma protein‐A and obstetric complications.
        Prenatal Diagn. 2013; 33: 839-847
        • Yliniemi A.
        • Nurkkala M.-M.
        • Kopman S.
        • et al.
        First trimester placental retinol-binding protein 4 (RBP4) and pregnancy-associated placental protein A (PAPP-A) in the prediction of early-onset severe pre-eclampsia.
        Metabolism. 2015; 64: 521-526
        • Borras D.
        • Perales-Puchalt A.
        • Ruiz Sacedon N.
        • Perales A.
        Angiogenic growth factors in maternal and fetal serum in pregnancies complicated with intrauterine growth restriction.
        J Obstet Gynaecol. 2014; 34: 218-220
        • Joó J.G.
        • Rigó Jr, J.
        • Börzsönyi B.
        • Demendi C.
        • Kornya L.
        Placental gene expression of the placental growth factor (PlGF) in intrauterine growth restriction.
        J Maternal-Fetal Neonatal Med. 2017; 30: 1471-1475
        • Audibert F.
        • Benchimol Y.
        • Benattar C.
        • Champagne C.
        • Frydman R.
        Prediction of preeclampsia or intrauterine growth restriction by second trimester serum screening and uterine Doppler velocimetry.
        Fetal Diagn Ther. 2005; 20: 48-53
        • Androutsopoulos G.
        • Gkogkos P.
        • Decavalas G.
        Mid-trimester maternal serum HCG and alpha fetal protein levels: clinical significance and prediction of adverse pregnancy outcome.
        Int J Endocrinol Metab. 2013; 11: 102
        • Nogueira A.I.
        • Santos R.A.S.
        • et al.
        The pregnancy-induced increase of plasma angiotensin-(1–7) is blunted in gestational diabetes.
        Regulatory Peptides. 2007; 141: 55-60
        • Abdel Moety G.A.F.
        • Almohamady M.
        • Sherif N.A.
        • et al.
        Could first-trimester assessment of placental functions predict preeclampsia and intrauterine growth restriction? A prospective cohort study.
        J Maternal-Fetal Neonatal Med. 2016; 29: 413-417
        • Conroy A.L.
        • Liles W.C.
        • Molyneux M.E.
        • Rogerson S.J.
        • Kain K.C.
        Performance characteristics of combinations of host biomarkers to identify women with occult placental malaria: a case-control study from Malawi.
        PLoS One. 2011; 6: e28540
        • Gueneuc A.
        • Deloron P.
        • Bertin G.I.
        Usefulness of a biomarker to identify placental dysfunction in the context of malaria.
        Malaria J. 2017; 16: 11
        • Zhao B.
        • Han X.
        • Meng Q.
        • Luo Q.
        Early second trimester maternal serum markers in the prediction of gestational diabetes mellitus.
        J Diabetes Investig. 2018; 9: 967-974
        • Syngelaki A.
        • Kotecha R.
        • Pastides A.
        • Wright A.
        • Nicolaides K.H.
        First-trimester biochemical markers of placentation in screening for gestational diabetes mellitus.
        Metabolism. 2015; 64: 1485-1489
        • Meng Q.
        • Shao L.
        • Luo X.
        • et al.
        Expressions of VEGF-A and VEGFR-2 in placentae from GDM pregnancies.
        Reproductive Biol Endocrinol. 2016; 14: 61
        • Beneventi F.
        • Simonetta M.
        • Locatelli E.
        • et al.
        Temporal variation in soluble human leukocyte antigen‐G (sHLA‐G) and pregnancy-associated plasma protein A (PAPP‐A) in pregnancies complicated by gestational diabetes mellitus and in controls.
        Am J Reprod Immunol. 2014; 72: 413-421
        • Lovati E.
        • Beneventi F.
        • Simonetta M.
        • et al.
        Gestational diabetes mellitus: including serum pregnancy-associated plasma protein-A testing in the clinical management of primiparous women? A case–control study.
        Diabetes Res Clin Pr. 2013; 100: 340-347
        • Diab A.E.
        • El‐Behery M.M.
        • Ebrahiem M.A.
        • Shehata A.E.
        Angiogenic factors for the prediction of pre‐eclampsia in women with abnormal midtrimester uterine artery Doppler velocimetry.
        Int J Gynecol Obstet. 2008; 102: 146-151
        • Wang W.
        • Zou Y.
        • Yan J.
        • et al.
        Ultrasensitive colorimetric immunoassay for hCG detection based on dual catalysis of [email protected] Pt core–shell nanoparticle functionalized by horseradish peroxidase.
        Spectrochim Acta Part A: Mol Biomolr Spectrosc. 2018; 193: 102-108
        • Chang C.-C.
        • Chen C.-Y.
        • Chen C.-P.
        • Lin C.-W.
        Facile colorimetric detection of human chorionic gonadotropin based on the peptide-induced aggregation of gold nanoparticles.
        Anal Methods. 2015; 7: 29-33
        • Zhu X.
        • Kou F.
        • Xu H.
        • Lin L.
        • Yang G.
        • Lin Z.
        A highly sensitive aptamer-immunoassay for vascular endothelial growth factor coupled with portable glucose meter and hybridization chain reaction.
        Sens Actuators B: Chem. 2017; 253: 660-665
        • Xu H.
        • Kou F.
        • Ye H.
        • et al.
        Highly sensitive antibody-aptamer sensor for vascular endothelial growth factor based on hybridization chain reaction and pH meter/indicator.
        Talanta. 2017; 175: 177-182
        • Heras J.Y.
        • Pallarola D.
        • Battaglini F.
        Electronic tongue for simultaneous detection of endotoxins and other contaminants of microbiological origin.
        Biosens Bioelectron. 2010; 25: 2470-2476
        • Kim S.-E.
        • Su W.
        • Cho M.
        • Lee Y.
        • Choe W.-S.
        Harnessing aptamers for electrochemical detection of endotoxin.
        Anal Biochem. 2012; 424: 12-20
        • Viet N.X.
        • Chikae M.
        • Ukita Y.
        • et al.
        Gold-linked electrochemical immunoassay on single-walled carbon nanotube for highly sensitive detection of human chorionic gonadotropinhormone.
        Biosens Bioelectron. 2013; 42: 592-597
        • Li R.
        • Wu D.
        • Li H.
        • et al.
        Label-free amperometric immunosensor for the detection of human serum chorionic gonadotropin based on nanoporous gold and graphene.
        Anal Biochem. 2011; 414: 196-201
        • Kerman K.
        • Nagatani N.
        • Chikae M.
        • Yuhi T.
        • Takamura Y.
        • Tamiya E.
        Label-free electrochemical immunoassay for the detection of human chorionic gonadotropin hormone.
        Anal Chem. 2006; 78: 5612-5616
        • Li J.
        • Liu G.
        • Zhang W.
        • Cheng W.
        • Xu H.
        • Ding S.
        Competitive detection of pregnancy-associated plasma protein-A in serum using functional single walled carbon nanotubes/chitosan-based electrochemical immunosensor.
        J Electroanall Chem. 2013; 708: 95-100
        • Kim G.-I.
        • Kim K.-W.
        • Oh M.-K.
        • Sung Y.-M.
        Electrochemical detection of vascular endothelial growth factors (VEGFs) using VEGF antibody fragments modified Au NPs/ITO electrode.
        Biosens Bioelectron. 2010; 25: 1717-1722
        • Pan L.-H.
        • Kuo S.-H.
        • Lin T.-Y.
        • Lin C.-W.
        • Fang P.-Y.
        • Yang H.-W.
        An electrochemical biosensor to simultaneously detect VEGF and PSA for early prostate cancer diagnosis based on graphene oxide/ssDNA/PLLA nanoparticles.
        Biosens Bioelectron. 2017; 89: 598-605
        • Sezginturk M.K.
        • Uygun Z.O.
        An impedimetric vascular endothelial growth factor biosensor-based PAMAM/cysteamine-modified gold electrode for monitoring of tumor growth.
        Anal Biochem. 2012; 423: 277-285
        • Park J.-M.
        • Jung H.-W.
        • Chang Y.W.
        • Kim H.-S.
        • Kang M.-J.
        • Pyun J.-C.
        Chemiluminescence lateral flow immunoassay based on Pt nanoparticle with peroxidase activity.
        Anal Chim Acta. 2015; 853: 360-367
        • Chiu N.-F.
        • Kuo C.-T.
        • Lin T.-L.
        • Chang C.-C.
        • Chen C.-Y.
        Ultra-high sensitivity of the non-immunological affinity of graphene oxide-peptide-based surface plasmon resonance biosensors to detect human chorionic gonadotropin.
        Biosens Bioelectron. 2017; 94: 351-357
        • Cennamo N.
        • Pesavento M.
        • Lunelli L.
        • et al.
        An easy way to realize SPR aptasensor: A multimode plastic optical fiber platform for cancer biomarkers detection.
        Talanta. 2015; 140: 88-95
        • Chen H.
        • Hou Y.
        • Qi F.
        • et al.
        Detection of vascular endothelial growth factor based on rolling circle amplification as a means of signal enhancement in surface plasmon resonance.
        Biosens Bioelectron. 2014; 61: 83-87
        • Bocková M.
        • Song X.C.
        • Gedeonová E.
        • et al.
        Surface plasmon resonance biosensor for detection of pregnancy associated plasma protein A2 in clinical samples.
        Anal Bioanal Chem. 2016; 408: 7265-7269
        • Ma L.
        • Wen G.
        • Ye L.
        • et al.
        SERS quantitative detection of trace human chorionic gonadotropin using a label‐free Victoria blue B as probe in the aggregated immunonanogold sol substrate.
        Luminescence. 2015; 30: 790-797
        • Mitsakakis K.
        • Gizeli E.
        Detection of multiple cardiac markers with an integrated acoustic platform for cardiovascular risk assessment.
        Anal Chim Acta. 2011; 699: 1-5
        • Goswami D.
        • Tannetta D.
        • Magee L.
        • et al.
        Excess syncytiotrophoblast microparticle shedding is a feature of early-onset pre-eclampsia, but not normotensive intrauterine growth restriction.
        Placenta. 2006; 27: 56-61
        • Qiu C.
        • Hevner K.
        • Enquobahrie D.A.
        • Williams M.A.
        A case-control study of maternal blood mitochondrial DNA copy number and preeclampsia risk.
        International journal of molecular epidemiology and genetics. 2012; 3: 237
        • Colleoni F.
        • Lattuada D.
        • Garretto A.
        • et al.
        Maternal blood mitochondrial DNA content during normal and intrauterine growth restricted (IUGR) pregnancy.
        Am J Obstet Gynecol. 2010; 203 (e1-. e6): 365
        • Moro L.
        • Bardají A.
        • Macete E.
        • et al.
        Placental microparticles and microRNAs in pregnant women with Plasmodium falciparum or HIV infection.
        PLoS One. 2016; 11e0146361
        • Salomon C.
        • Scholz-Romero K.
        • Sarker S.
        • et al.
        Gestational diabetes mellitus is associated with changes in the concentration and bioactivity of placenta-derived exosomes in maternal circulation across gestation.
        Diabetes. 2016; 65: 598-609
        • Crovetto F.
        • Lattuada D.
        • Rossi G.
        • et al.
        A role for mitochondria in gestational diabetes mellitus?.
        Gynecol Endocrinol. 2013; 29: 259-262
        • Pillay P.
        • Maharaj N.
        • Moodley J.
        • Mackraj I.
        Placental exosomes and pre-eclampsia: maternal circulating levels in normal pregnancies and, early and late onset pre-eclamptic pregnancies.
        Placenta. 2016; 46: 18-25
        • Dragovic R.
        • Collett G.
        • Hole P.
        • et al.
        Isolation of syncytiotrophoblast microvesicles and exosomes and their characterisation by multicolour flow cytometry and fluorescence Nanoparticle Tracking Analysis.
        Methods. 2015; 87: 64-74
        • Im H.
        • Shao H.
        • Park Y.I.
        • et al.
        Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor.
        Nat Biotechnol. 2014; 32: 490
        • Ferguson K.K.
        • McElrath T.F.
        • Chen Y.H.
        • Mukherjee B.
        • Meeker J.D.
        Longitudinal profiling of inflammatory cytokines and C‐reactive protein during uncomplicated and preterm pregnancy.
        Am J Reprod Immunol. 2014; 72: 326-336
        • Silva D.M.C.e.
        • Marreiro D.d.N.
        • Moita Neto J.M.
        • et al.
        Oxidative stress and immunological alteration in women with preeclampsia.
        Hypertension Pregnancy. 2013; 32: 304-311
        • Kumar A.
        • Begum N.
        • Prasad S.
        • Agarwal S.
        • Sharma S.
        IL-10, TNF-alpha & IFN-gamma: Potential early biomarkers for preeclampsia.
        Cell Immunol. 2013; 283: 70-74
        • Pinheiro M.B.
        • Martins-Filho O.A.
        • Mota A.P.L.
        • et al.
        Severe preeclampsia goes along with a cytokine network disturbance towards a systemic inflammatory state.
        Cytokine. 2013; 62: 165-173
        • Daneva A.M.
        • Hadzi-Lega M.
        • Stefanovic M.
        Correlation of the system of cytokines in moderate and severe preeclampsia.
        Clin Exp Obstet Gynecol. 2016; 43: 220-224
        • Tuuri A.
        • Jauhiainen M.
        • Tikkanen M.
        • Kaaja R.
        Systolic blood pressure and fatty acid-binding protein 4 predict pregnancy-induced hypertension in overweight nulliparous women.
        Placenta. 2014; 35: 797-801
        • van Rijn B.B.
        • Veerbeek J.H.
        • Scholtens L.C.
        • et al.
        C-reactive protein and fibrinogen levels as determinants of recurrent preeclampsia: a prospective cohort study.
        J Hypertension. 2014; 32: 408-414
        • Elfayomy A.
        • Habib F.
        • Almasry S.
        • Safwat M.
        • Eldomiaty M.
        Serum levels of adrenomedullin and inflammatory cytokines in women with term idiopathic intrauterine growth restriction.
        J Obstet Gynaecol. 2013; 33: 135-139
        • Holcberg G.
        • Huleihel M.
        • Sapir O.
        • et al.
        Increased production of tumor necrosis factor-α TNF-α by IUGR human placentae.
        Eur J Obstet Gyn R B. 2001; 94: 69-72
        • Boutsikou T.
        • Mastorakos G.
        • Kyriakakou M.
        • et al.
        Circulating levels of inflammatory markers in intrauterine growth restriction.
        Mediators Inflamm. 2010; 2010790695
        • Chandrasiri U.P.
        • Randall L.M.
        • Saad A.A.
        • Bashir A.M.
        • Rogerson S.J.
        • Adam I.
        Low antibody levels to pregnancy-specific malaria antigens and heightened cytokine responses associated with severe malaria in pregnancy.
        J Infect Dis. 2013; 209: 1408-1417
        • Bayoumi N.K.
        • Bakhet K.H.
        • Mohmmed A.A.
        • et al.
        Cytokine profiles in peripheral, placental and cord blood in an area of unstable malaria transmission in eastern Sudan.
        J Trop Pediatr. 2008; 55: 233-237
        • Wilson N.O.
        • Bythwood T.
        • Solomon W.
        • et al.
        Elevated levels of IL-10 and G-CSF associated with asymptomatic malaria in pregnant women.
        Infect Dis Obstet Gynecol. 2010; 2010317430
        • Thévenon A.D.
        • Zhou J.A.
        • Megnekou R.
        • Ako S.
        • Leke R.G.
        • Taylor D.W.
        Elevated levels of soluble TNF receptors 1 and 2 correlate with Plasmodium falciparum parasitemia in pregnant women: potential markers for malaria-associated inflammation.
        J Immunol. 2010; 185: 7115-7122
        • Syngelaki A.
        • Visser G.H.
        • Krithinakis K.
        • Wright A.
        • Nicolaides K.H.
        First trimester screening for gestational diabetes mellitus by maternal factors and markers of inflammation.
        Metabolism. 2016; 65: 131-137
        • Genc S.
        • Kusku-Kiraz Z.
        • Dervisoglu E.
        • Oztop N.
        • Dinccag N.
        • Gurdol F.
        The relation of oxidative stress biomarkers with proinflammatory cytokines in gestational diabetes.
        Clin Investig. 2017; 7: 43-48
        • Siddiqui S.
        • Waghdhare S.
        • Panda M.
        • Dubey S.
        • Jha S.
        Association of IL-6 and CRP levels with gestational diabetes mellitus.
        Am Diabetes Assoc. 2018; 67 (2417-PUB)
        • Wolf M.
        • Sandler L.
        • Hsu K.
        • Vossen-Smirnakis K.
        • Ecker J.L.
        • Thadhani R.
        First-trimester C-reactive protein and subsequent gestational diabetes.
        Diabetes Care. 2003; 26: 819-824
        • Luo L.
        • Zhang Z.
        • Ma L.
        Determination of recombinant human tumor necrosis factor-α in serum by chemiluminescence imaging.
        Anal Chim Acta. 2005; 539: 277-282
        • Mazloum-Ardakani M.
        • Hosseinzadeh L.
        • Khoshroo A.
        Label-free electrochemical immunosensor for detection of tumor necrosis factor α based on fullerene-functionalized carbon nanotubes/ionic liquid.
        J Electroanall Chem. 2015; 757: 58-64
        • Liu Y.
        • Zhou Q.
        • Revzin A.
        An aptasensor for electrochemical detection of tumor necrosis factor in human blood.
        Analyst. 2013; 138: 4321-4326
        • Bettazzi F.
        • Enayati L.
        • Sánchez I.C.
        • Motaghed R.
        • Mascini M.
        • Palchetti I.
        Electrochemical bioassay for the detection of TNF-α using magnetic beads and disposable screen-printed array of electrodes.
        Bioanalysis. 2013; 5: 11-19
        • Kongsuphol P.
        • Ng H.H.
        • Pursey J.P.
        • et al.
        EIS-based biosensor for ultra-sensitive detection of TNF-α from non-diluted human serum.
        Biosens Bioelectron. 2014; 61: 274-279
        • Bryan T.
        • Luo X.
        • Bueno P.R.
        • Davis J.J.
        An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood.
        Biosens Bioelectron. 2013; 39: 94-98
        • Songjaroen T.
        • Feeny R.M.
        • Mensack M.M.
        • Laiwattanapaisal W.
        • Henry C.S.
        Label-free detection of C-reactive protein using an electrochemical DNA immunoassay.
        Sens Bio-sens Res. 2016; 8: 14-19
        • Zhang J.
        • Zhang W.
        • Guo J.
        • Wang J.
        • Zhang Y.
        Electrochemical detection of C-reactive protein using copper nanoparticles and hybridization chain reaction amplifying signal.
        Anal Biochem. 2017; 539: 1-7
        • Jung S.-H.
        • Jung J.-W.
        • Suh I.-B.
        • et al.
        Analysis of C-reactive protein on amide-linked N-hydroxysuccinimide− dextran arrays with a spectral surface plasmon resonance biosensor for serodiagnosis.
        Anal Chem. 2007; 79: 5703-5710
        • Hu W.-P.
        • Hsu H.-Y.
        • Chiou A.
        • et al.
        Immunodetection of pentamer and modified C-reactive protein using surface plasmon resonance biosensing.
        Biosens Bioelectron. 2006; 21: 1631-1637
        • van den Hurk R.
        • Evoy S.
        Deflection cantilever detection of interferon gamma.
        Sens Actuators B: Chem. 2013; 176: 960-965
        • Chen C.-H.
        • Hwang R.-Z.
        • Huang L.-S.
        • et al.
        A wireless bio-MEMS sensor for C-reactive protein detection based on nanomechanics.
        IEEE Trans Biomed Eng. 2009; 56: 462-470
        • Lee J.H.
        • Yoon K.H.
        • Hwang K.S.
        • Park J.
        • Ahn S.
        • Kim T.S.
        Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein.
        Biosens Bioelectron. 2004; 20: 269-275
        • Bahk Y.K.
        • Kim H.H.
        • Park D.-S.
        • Chang S.-C.
        • Go J.S.
        A new concept for efficient sensitivity amplification of a QCM based immunosensor for TNF-alpha by using modified magnetic particles under applied magnetic field.
        Bull Korean Chem Soc. 2011; 32: 4215-4220
        • Krishnamoorthy S.
        • Iliadis A.A.
        • Bei T.
        • Chrousos G.P.
        An interleukin-6 ZnO/SiO2/Si surface acoustic wave biosensor.
        Biosens Bioelectron. 2008; 24: 313-318
        • Schoots M.H.
        • Gordijn S.J.
        • Scherjon S.A.
        • van Goor H.
        • Hillebrands J.L.
        Oxidative stress in placental pathology.
        Placenta. 2018; 69: 153-161
        • de Lucca L.
        • Rodrigues F.
        • Jantsch L.B.
        • et al.
        Delta-aminolevulinate dehydratase activity and oxidative stress markers in preeclampsia.
        Biomed Pharmacother. 2016; 84: 224-229
        • Rodrigues F.
        • de Lucca L.
        • Neme W.S.
        • Goncalves T.D.
        Influence of gestational diabetes on the activity of delta-aminolevulinate dehydratase and oxidative stress biomarkers.
        Redox Rep. 2018; 23: 63-67
        • Jacques-Silva M.C.
        • Nogueira C.W.
        • Broch L.C.
        • Flores E.M.M.
        • Rocha J.B.T.
        Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice.
        Pharmacol Toxicol. 2001; 88: 119-125
        • Galley H.F.
        • Davies M.J.
        • Webster N.R.
        Ascorbyl radical formation in patients with sepsis: effect of ascorbate loading.
        Free Radical Biol Med. 1996; 20: 494
        • Aebi H.
        [13]Catalase in vitro. Methods in enzymology. 105.
        Elsevier, 1984: 121-126
        • Ghaneei A.
        • Yassini S.
        • Ghanei M.E.
        • Shojaoddiny-Ardekani A.
        Increased serum oxidized low-density lipoprotein levels in pregnancies complicated by gestational diabetes mellitus.
        Iran J Reprod Med. 2015; 13: 421
        • Muehlenbachs A.
        • Mutabingwa T.K.
        • Edmonds S.
        • Fried M.
        • Duffy P.E.
        Hypertension and maternal–fetal conflict during placental malaria.
        PLoS Med. 2006; 3: e446
        • Aouache R.
        • Biquard L.
        • Vaiman D.
        • Miralles F.
        Oxidative stress in preeclampsia and placental diseases.
        Int J Mol Sci. 2018; 19: 1496
        • Liu Y.
        • Zhao Y.
        • Yu A.
        • Zhao B.
        • Gao Y.
        • Niu H.
        Diagnostic accuracy of the soluble Fms-like tyrosine kinase-1/placental growth factor ratio for preeclampsia: a meta-analysis based on 20 studies.
        Arch Gynecol Obstet. 2015; 292: 507-518
        • Kenny L.C.
        • Black M.A.
        • Poston L.
        • et al.
        Early pregnancy prediction of preeclampsia in nulliparous women, combining clinical risk and biomarkers: the Screening for Pregnancy Endpoints (SCOPE) international cohort study.
        Hypertension. 2014; 64: 644-652
        • Merrill D.C.
        • Karoly M.
        • Chen K.
        • Ferrario C.M.
        • Brosnihan K.B.
        Angiotensin-(1–7) in normal and preeclamptic pregnancy.
        Endocrine. 2002; 18: 239-245
        • Langer B.
        • Bader A.-M.
        • Schlaeder G.
        • Imbs J.-L.
        Plasma active renin, angiotensin I, and angiotensin II during pregnancy and in preeclampsia.
        Obstet Gynecol. 1998; 91: 196-202
        • Nergiz Avcıoğlu S.
        • Demircan Sezer S.
        • Küçük M.
        • et al.
        Maternal serum concentrations of s-Endoglin and IL-6 in pregnancy complicated by preterm premature membrane rupture.
        J Maternal-Fetal Neonatal Med. 2016; 29: 1957-1962
        • Chafetz I.
        • Kuhnreich I.
        • Sammar M.
        • et al.
        First-trimester placental protein 13 screening for preeclampsia and intrauterine growth restriction.
        Am J Obstet Gynecol. 2007; 197 (e1-. e7): 35
        • Unverdorben L.
        • Hüttenbrenner R.
        • Knabl J.
        • Jeschke U.
        • Hutter S.
        Galectin-13/PP-13 expression in term placentas of gestational diabetes mellitus pregnancies.
        Placenta. 2015; 36: 191-198
        • Olsen R.N.
        • Woelkers D.
        • Dunsmoor-Su R.
        • LaCoursiere D.Y.
        Abnormal second-trimester serum analytes are more predictive of preterm preeclampsia.
        Am J Obstet Gynecol. 2012; 207 (e1-. e7): 228
        • Mierzyński R.
        • Poniedziałek-Czajkowska E.
        • Dłuski D.
        • et al.
        Nesfatin-1 and vaspin as potential novel biomarkers for the prediction and early diagnosis of gestational diabetes mellitus.
        Int J Mol Sci. 2019; 20: 159
        • Tannetta D.
        • Collett G.
        • Vatish M.
        • Redman C.
        • Sargent I.
        Syncytiotrophoblast extracellular vesicles - circulating biopsies reflecting placental health.
        Placenta. 2017; 52: 134-138
        • Sokolova V.
        • Ludwig A.-K.
        • Hornung S.
        • et al.
        Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy.
        Colloids Surf B: Biointerfaces. 2011; 87: 146-150
        • Théry C.
        • Amigorena S.
        • Raposo G.
        • Clayton A.
        Isolation and characterization of exosomes from cell culture supernatants and biological fluids.
        Curr Protoc Cell Biol. 2006; 30 (3.22. 1-3. 9)
        • Hakulinen J.
        • Sankkila L.
        • Sugiyama N.
        • Lehti K.
        • Keski‐Oja J.
        Secretion of active membrane type 1 matrix metalloproteinase (MMP‐14) into extracellular space in microvesicular exosomes.
        J Cell Biochem. 2008; 105: 1211-1218
        • Lawrie A.
        • Albanyan A.
        • Cardigan R.
        • Mackie I.
        • Harrison P.
        Microparticle sizing by dynamic light scattering in fresh‐frozen plasma.
        Vox Sanguinis. 2009; 96: 206-212
        • Xu Y.
        • Nakane N.
        • Maurer‐Spurej E.
        Novel test for microparticles in platelet‐rich plasma and platelet concentrates using dynamic light scattering.
        Transfusion. 2011; 51: 363-370
        • Sitar S.
        • Kejžar A.
        • Pahovnik D.
        • et al.
        Size characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation.
        Anal Chem. 2015; 87: 9225-9233
        • Coumans F.A.
        • van der Pol E.
        • Böing A.N.
        • et al.
        Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing.
        J Extracell Vesicles. 2014; 3: 25922
        • Maas S.L.
        • Broekman M.L.
        • de Vrij J.
        Tunable resistive pulse sensing for the characterization of extracellular vesicles.
        Exosomes and microvesicles. Springer, 2017: 21-33
        • Lee K.
        • Fraser K.
        • Ghaddar B.
        • et al.
        Multiplexed profiling of single extracellular vesicles.
        ACS Nano. 2018; 12: 494-503
        • Coumans F.A.W.
        • Brisson A.R.
        • Buzas E.I.
        • et al.
        Methodological guidelines to study extracellular vesicles.
        Circ Res. 2017; 120: 1632-1648
        • Van Der Vlist E.J.
        • Nolte E.N.
        • Stoorvogel W.
        • Arkesteijn G.J.
        • Wauben M.H.
        Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry.
        Nat Protoc. 2012; 7: 1311
        • Padda R.S.
        • Deng F.K.
        • Brett S.I.
        • et al.
        Nanoscale flow cytometry to distinguish subpopulations of prostate extracellular vesicles in patient plasma.
        Prostate. 2019; 79: 592-603
        • Morales-Kastresana A.
        • Telford B.
        • Musich T.A.
        • et al.
        Labeling extracellular vesicles for nanoscale flow cytometry.
        Scientific Rep. 2017; 7: 1878
        • Bobrie A.
        • Colombo M.
        • Krumeich S.
        • Raposo G.
        • Thery C.
        Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation.
        J Extracell Vesicles. 2012; 1
        • Morgan T.K.
        Cell- and size-specific analysis of placental extracellular vesicles in maternal plasma and pre-eclampsia.
        Transl Res. 2018; 201: 40-48
        • Spracklen C.N.
        • Smith C.J.
        • Saftlas A.F.
        • Robinson J.G.
        • Ryckman K.K.
        Maternal hyperlipidemia and the risk of preeclampsia: a meta-analysis.
        Am J Epidemiol. 2014; 180: 346-358
        • Siddiqui I.
        Maternal serum lipids in women with pre-eclampsia.
        Ann Med Health Sci Res. 2014; 4: 638-641
        • Anand S.
        • Young S.
        • Esplin M.S.
        • et al.
        Detection and confirmation of serum lipid biomarkers for preeclampsia using direct infusion mass spectrometry.
        J Lipid Res. 2016; 57: 687-696
        • Black K.D.
        • Horowitz J.A.
        Inflammatory markers and preeclampsia: a systematic review.
        J Lipid Res. 2018; 67: 242-251
        • Rodrigo N.
        • Glastras S.J.
        The emerging role of biomarkers in the diagnosis of gestational diabetes mellitus.
        J Clin Med. 2018; 7: 120
        • Sonker M.
        • Sahore V.
        • Woolley A.T.
        Recent advances in microfluidic sample preparation and separation techniques for molecular biomarker analysis: a critical review.
        Anal Chim Acta. 2017; 986: 1-11
        • Gámez-Valero A.
        • Monguió-Tortajada M.
        • Carreras-Planella L.
        • Beyer K.
        • Borràs F.E.
        Size-exclusion chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents.
        Scientific Rep. 2016; 6: 33641
        • Paolini L.
        • Zendrini A.
        • Di Noto G.
        • et al.
        Residual matrix from different separation techniques impacts exosome biological activity.
        Scientific Rep. 2016; 6: 23550
        • Wang Z.
        • Wu H.-j.
        • Fine D.
        • et al.
        Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles.
        Lab Chip. 2013; 13: 2879-2882
        • Huang L.R.
        • Cox E.C.
        • Austin R.H.
        • Sturm J.C.
        Continuous particle separation through deterministic lateral displacement.
        Science. 2004; 304: 987-990
        • Santana S.M.
        • Antonyak M.A.
        • Cerione R.A.
        • Kirby B.J.
        Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations.
        Biomed Microdevices. 2014; 16: 869-877
        • Wu M.
        • Ouyang Y.
        • Wang Z.
        • et al.
        Isolation of exosomes from whole blood by integrating acoustics and microfluidics.
        Proc Natl Acad Sci USA. 2017; 114: 10584-10589
        • Hedlund M.
        • Stenqvist A.-C.
        • Nagaeva O.
        • et al.
        Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function.
        J Immunol. 2009; 183: 340-351
        • Mincheva‐Nilsson L.
        • Baranov V.
        Placenta‐derived exosomes and syncytiotrophoblast microparticles and their role in human reproduction: immune modulation for pregnancy success.
        Am J Reprod Immunol. 2014; 72: 440-457
        • Kanwar S.S.
        • Dunlay C.J.
        • Simeone D.M.
        • Nagrath S.
        Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes.
        Lab Chip. 2014; 14: 1891-1900
        • Chen C.
        • Skog J.
        • Hsu C.-H.
        • et al.
        Microfluidic isolation and transcriptome analysis of serum microvesicles.
        Lab Chip. 2010; 10: 505-511
        • Zhao Z.
        • Yang Y.
        • Zeng Y.
        • He M.
        A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis.
        Lab Chip. 2016; 16: 489-496
        • He M.
        • Crow J.
        • Roth M.
        • Zeng Y.
        • Godwin A.K.
        Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology.
        Lab Chip. 2014; 14: 3773-3780
        • Dawe G.S.
        • Tan X.W.
        • Xiao Z.-C.
        Cell migration from baby to mother.
        Cell Adhesion Migration. 2007; 1: 19-27
        • Huang C.-E.
        • Ma G.-C.
        • Jou H.-J.
        • et al.
        Noninvasive prenatal diagnosis of fetal aneuploidy by circulating fetal nucleated red blood cells and extravillous trophoblasts using silicon-based nanostructured microfluidics.
        Mol Cytogenet. 2017; 10: 44
        • Wei X.
        • Cai B.
        • Chen K.
        • et al.
        Enhanced isolation and release of fetal nucleated red blood cells using multifunctional nanoparticle-based microfluidic device for non-invasive prenatal diagnostics.
        Sens Actuators B: Chem. 2019; 281: 131-138
        • Zhang H.
        • Yang Y.
        • Li X.
        • et al.
        Frequency-enhanced transferrin receptor antibody-labelled microfluidic chip (FETAL-Chip) enables efficient enrichment of circulating nucleated red blood cells for non-invasive prenatal diagnosis.
        Lab Chip. 2018; 18: 2749-2756
      2. Feng B, Luo Y, Ge F, et al. Site‐oriented immobilization of fusion antigen directed by an affinity ligand, and its validation in an immunoassay. 2011;43(10):1304–10.

        • Schmidt M.
        • Hoffmann B.
        • Beelen D.
        • et al.
        Detection of circulating trophoblast particles in peripheral maternal blood in preeclampsia complicated pregnancies.
        Hypertension Pregnancy. 2008; 27: 131-142
      3. Fetal cells in maternal blood.
        in: Holzgreve W. Zhong X.Y. Troeger C. Haari I. Kiefer V. Hahn S. An overview of the basel experience. Fetal cells and fetal DNA in maternal blood: new developments for a new millennium: 11th fetal cell workshop, Basel, April 15, 2000. Karger Medical and Scientific Publishers, 2001
        • Coleman S.
        • Gerza L.
        • Jones C.
        • Sibley C.
        • Aplin J.
        • Heazell A.
        Syncytial nuclear aggregates in normal placenta show increased nuclear condensation, but apoptosis and cytoskeletal redistribution are uncommon.
        Placenta. 2013; 34: 449-455
        • Vestergaard E.M.
        • Singh R.
        • Schelde P.
        • et al.
        On the road to replacing invasive testing with cell‐based NIPT: five clinical cases with aneuploidies, microduplication, unbalanced structural rearrangement, or mosaicism.
        Prenatal Diagnosis. 2017; 37: 1120-1124
        • Winter M.
        • Hardy T.
        • Rezaei M.
        • et al.
        Isolation of circulating fetal trophoblasts using inertial microfluidics for noninvasive prenatal testing.
        Adv Mater Technol. 2018; 31800066
        • Choi J.
        • Smitz J.
        Luteinizing hormone and human chorionic gonadotropin: distinguishing unique physiologic roles.
        Gynecol Endocrinol. 2014; 30: 174-181
        • Liao J.-Y.
        Detection of human chorionic gonadotrophin hormone using a label-free epoxysilane-modified capacitive immunosensor.
        Appl Microbiol Biotechnol. 2007; 74: 1385-1391
        • Zhang B.
        • Mao Q.
        • Zhang X.
        • et al.
        A novel piezoelectric quartz micro-array immunosensor based on self-assembled monolayer for determination of human chorionic gonadotropin.
        Biosens Bioelectron. 2004; 19: 711-720
        • Idegami K.
        • Chikae M.
        • Kerman K.
        • et al.
        Gold nanoparticle‐based redox signal enhancement for sensitive detection of human chorionic gonadotropin hormone.
        electroanalysis: an international journal devoted to fundamental and practical aspects of electroanalysis. 2008; 20: 14-21
        • Chung N.N.
        • Hamlin R.E.
        • Zwang T.J.
        • Johal M.S.
        Human chorionic gonadotropin interactions with immobilized anti‐hCG studied by quartz‐crystal microbalance with dissipation monitoring.
        J Biomed Mater Res A. 2012; 100: 1600-1604
        • Hung M.-S.
        • Chang H.-Y.
        A simple microfluidics for real-time plasma separation and hCG detection from whole blood.
        J Chin Inst Eng. 2015; 38: 685-691
        • Tripathi S.
        • Kumar Y.B.
        • Agrawal A.
        • Prabhakar A.
        • Joshi S.S.
        Microdevice for plasma separation from whole human blood using bio-physical and geometrical effects.
        Scientific Rep. 2016; 6: 26749
        • Zhao Z.
        • Al-Ameen M.A.
        • Duan K.
        • Ghosh G.
        • Lo J.F.
        On-chip porous microgel generation for microfluidic enhanced VEGF detection.
        Biosens Bioelectron. 2015; 74: 305-312
        • Hofmann H.
        • Hillger F.
        • Pfeil S.H.
        Single-molecule spectroscopy of protein folding in a chaperonin cage.
        Proc Natl Acad Sci USA. 2010; 107: 11793-11798
        • Lipman E.A.
        • Schuler B.
        • Bakajin O.
        • Eaton W.A.
        Single-molecule measurement of protein folding kinetics.
        Science. 2003; 301: 1233-1235
        • Vahidi S.
        • Stocks B.B.
        • Liaghati-Mobarhan Y.
        • Konermann L.
        Submillisecond protein folding events monitored by rapid mixing and mass spectrometry-based oxidative labeling.
        Anal Chem. 2013; 85: 8618-8625
        • Zhang J.
        • Zhou R.
        • Inoue J.
        • Mikawa T.
        • Ha T.
        Single molecule analysis of Thermus thermophilus SSB protein dynamics on single-stranded DNA.
        Nucleic Acids Res. 2013; 42: 3821-3832
        • Lin X.
        • Leung K.-H.
        • Lin L.
        • et al.
        Determination of cell metabolite VEGF165 and dynamic analysis of protein–DNA interactions by combination of microfluidic technique and luminescent switch-on probe.
        Biosens Bioelectron. 2016; 79: 41-47
        • Wu P.
        • van den Berg C.
        • Alfirevic Z.
        • et al.
        Early pregnancy biomarkers in pre-eclampsia: a systematic review and meta-analysis.
        Int J Mol Sci. 2015; 16: 23035-23056
        • Park H.J.
        • Kim S.H.
        • Jung Y.W.
        • et al.
        Screening models using multiple markers for early detection of late-onset preeclampsia in low-risk pregnancy.
        BMC Pregnancy Childbirth. 2014; 14: 35
        • Sørensen K.M.
        • El‐Segaier M.
        • Fernlund E.
        • et al.
        Screening of congenital heart disease patients using multiplex ligation‐dependent probe amplification: early diagnosis of syndromic patients.
        Am J Med Genet A. 2012; 158: 720-725
        • Lee S.
        • Yoo N.C.
        • Choi J.
        • Yoo N.C.
        • Yoo S.M.
        • Choi J.H.
        Applications of DNA microarray in disease diagnostics.
        J Microbiol Biotechnol. 2009; 19: 635-646
        • Hanash S.
        Disease proteomics.
        Nature. 2003; 422: 226
        • Oleinikov A.V.
        • Gray M.D.
        • Zhao J.
        • Montgomery D.D.
        • Ghindilis A.L.
        • Dill K.
        Self-assembling protein arrays using electronic semiconductor microchips and in vitro translation.
        J Proteome Res. 2003; 2: 313-319
        • Dill K.
        • Montgomery D.
        • Ghindilis A.
        • Schwarzkopf K.
        • Ragsdale S.
        • Oleinikov A.
        Immunoassays based on electrochemical detection using microelectrode arrays.
        Biosens Bioelectron. 2004; 20: 736-742
        • Araz M.K.
        • Apori A.A.
        • Salisbury C.M.
        • Herr A.E.
        Microfluidic barcode assay for antibody-based confirmatory diagnostics.
        Lab Chip. 2013; 13: 3910-3920
        • Zhou J.
        • Tao F.
        • Zhu J.
        • et al.
        Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluidics.
        Nanophotonics. 2018; 8: 307-316
        • Shao H.
        • Im H.
        • Castro C.M.
        • Breakefield X.
        • Weissleder R.
        • Lee H.J.
        New technologies for analysis of extracellular vesicles.
        Cr. 2018; 118: 1917-1950
        • Shao H.
        • Yoon T.-J.
        • Liong M.
        • Weissleder R.
        • Lee H.
        Magnetic nanoparticles for biomedical NMR-based diagnostics.
        JBjon. 2010; 1: 142-154
      4. Shao H, Min C, Issadore D, et al. Magnetic nanoparticles and microNMR for diagnostic applications. 2012;2(1):55.

        • Brolo A.G.
        Plasmonics for future biosensors.
        JNP. 2012; 6: 709
        • Lee H.
        • Sun E.
        • Ham D.
        • Weissleder R.
        Chip–NMR biosensor for detection and molecular analysis of cells.
        JNm. 2008; 14: 869
        • Lee H.
        • Yoon T.-J.
        • Figueiredo J.-L.
        • Swirski F.K.
        • Weissleder R.
        Rapid detection and profiling of cancer cells in fine-needle aspirates.
        JPotNAoS. 2009; 106: 12459-12464
      5. Shao H, Chung J, Balaj L, et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. 2012;18(12):1835.

        • Jeong S.
        • Park J.
        • Pathania D.
        • Castro C.M.
        • Weissleder R.
        • Lee H.
        Integrated magneto–electrochemical sensor for exosome analysis.
        JAn. 2016; 10: 1802-1809
        • Leuvering J.H.
        • Thal P.
        • Waart vd M.
        • Schuurs A.
        Sol particle immunoassay (SPIA).
        J Immunoassay. 1980; 1: 77-91
        • Song Y.
        • Zhang Y.
        • Bernard P.E.
        • et al.
        Multiplexed volumetric bar-chart chip for point-of-care diagnostics.
        Nat Commun. 2012; 3: 1283
        • Balakrishnan S.
        • Hashim U.
        • Gopinath S.C.
        • et al.
        A point-of-care immunosensor for human chorionic gonadotropin in clinical urine samples using a cuneated polysilicon nanogap lab-on-chip.
        PLoS One. 2015; 10e0137891
        • Lun F.M.
        • Chiu R.W.
        • Chan K.A.
        • Leung T.Y.
        • Lau T.K.
        • Lo Y.D.
        Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma.
        Clin Chem. 2008; 54: 1664-1672
        • Enquobahrie D.A.
        • Meller M.
        • Rice K.
        • Psaty B.M.
        • Siscovick D.S.
        • Williams M.A.
        Differential placental gene expression in preeclampsia.
        Am J Obstet Gynecol. 2008; 199 (e1-e11): 566
        • Okazaki S.
        • Sekizawa A.
        • Purwosunu Y.
        • Farina A.
        • Wibowo N.
        • Okai T.
        Placenta-derived, cellular messenger RNA expression in the maternal blood of preeclamptic women.
        Obstet Gynecol. 2007; 110: 1130-1136
        • Pang W.W.
        • Tsui M.H.
        • Sahota D.
        • et al.
        A strategy for identifying circulating placental RNA markers for fetal growth assessment.
        Prenatal Diagn. 2009; 29: 495-504
        • Tsang J.C.
        • Vong J.S.
        • Ji L.
        • et al.
        Integrative single-cell and cell-free plasma RNA transcriptomics elucidates placental cellular dynamics.
        Proc Natl Acad Sci USA. 2017; 114: E7786-E7E95
        • Ghindilis A.L.
        • Chesnokov O.
        • Ngasala B.
        • et al.
        Detection of sub-microscopic blood levels of Plasmodium falciparum using Tandem Oligonucleotide Repeat Cascade Amplification (TORCA) assay with an attomolar detection limit.
        Scientific Rep. 2019; 9: 1-12
        • Malhotra R.
        • Patel V.
        • Vaqué J.P.
        • Gutkind J.S.
        • Rusling J.F.
        Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification.
        JAc. 2010; 82: 3118-3123
        • Munge B.S.
        • Fisher J.
        • Millord L.N.
        • Krause C.E.
        • Dowd R.S.
        • Rusling J.F.
        Sensitive electrochemical immunosensor for matrix metalloproteinase-3 based on single-wall carbon nanotubes.
        JA. 2010; 135: 1345-1350
        • Liu G.
        • Liu J.
        • Davis T.P.
        • Gooding J.J.
        Electrochemical impedance immunosensor based on gold nanoparticles and aryl diazonium salt functionalized gold electrodes for the detection of antibody.
        JB, Bioelectronics. 2011; 26: 3660-3665
        • Chullasat K.
        • Kanatharana P.
        • Limbut W.
        • Numnuam A.
        • Thavarungkul P.
        Ultra trace analysis of small molecule by label-free impedimetric immunosensor using multilayer modified electrode.
        JB, Bioelectronics. 2011; 26: 4571-4578
        • Kong F.-Y.
        • Xu M.-T.
        • Xu J.-J.
        • Chen H.-Y.
        A novel lable-free electrochemical immunosensor for carcinoembryonic antigen based on gold nanoparticles–thionine–reduced graphene oxide nanocomposite film modified glassy carbon electrode.
        JT. 2011; 85: 2620-2625
        • Leng C.
        • Wu J.
        • Xu Q.
        • et al.
        A highly sensitive disposable immunosensor through direct electro-reduction of oxygen catalyzed by palladium nanoparticle decorated carbon nanotube label.
        Biosen Bioelectron. 2011; 27: 71-76
        • Tang J.
        • Hu R.
        • Wu Z.-S.
        • Shen G.-L.
        • Yu R.-Q.
        A highly sensitive electrochemical immunosensor based on coral-shaped AuNPs with CHITs inorganic–organic hybrid film.
        Talanta. 2011; 85: 117-122
        • Liu Y.
        • Liu Y.
        • Qiao L.
        • Liu Y.
        • Liu B.
        Advances in signal amplification strategies for electrochemical biosensing.
        Curr Opin Electrochem. 2018; 12: 5-12
        • Kwon O.S.
        • Park S.J.
        • Jang J.
        A high-performance VEGF aptamer functionalized polypyrrole nanotube biosensor.
        Biomaterials. 2010; 31: 4740-4747
        • Rosales-Rivera L.
        • Acero-Sánchez J.
        • Lozano-Sánchez P.
        • Katakis I.
        • O'Sullivan C.J.B.
        Electrochemical immunosensor detection of antigliadin antibodies from real human serum.
        Bioelectronics. 2011; 26: 4471-4476
        • You M.
        • Yang S.
        • Tang W.
        • Zhang F.
        • He P.-G.
        Ultrasensitive electrochemical detection of glycoprotein based on boronate affinity sandwich assay and signal amplification with functionalized [email protected] Au nanocomposites.
        ACS Appl Mater Interfaces. 2017; 9: 13855-13864
        • Feng B.
        • Zhu R.
        • Xu S.
        • Chen Y.
        • Di J.
        A sensitive LSPR sensor based on glutathione-functionalized gold nanoparticles on a substrate for the detection of Pb2+ ions.
        RSC Adv. 2018; 8: 4049-4056
        • Gao R.
        • Ko J.
        • Cha K.
        • et al.
        Fast and sensitive detection of an anthrax biomarker using SERS-based solenoid microfluidic sensor.
        Biosens Bioelectron. 2015; 72: 230-236
        • Kilic O.
        • Pamies D.
        • Lavell E.
        • et al.
        Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis.
        Lab Chip. 2016; 16: 4152-4162
        • Park J.
        • Lee B.K.
        • Jeong G.S.
        • Hyun J.K.
        • Lee C.J.
        • Lee S.-H.
        Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer's disease.
        Lab Chip. 2015; 15: 141-150
        • Zhang Y.S.
        • Arneri A.
        • Bersini S.
        • et al.
        Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip.
        Biomaterials. 2016; 110: 45-59
        • Marsano A.
        • Conficconi C.
        • Lemme M.
        • et al.
        Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues.
        Lab Chip. 2016; 16: 599-610
        • Bhise N.S.
        • Manoharan V.
        • Massa S.
        • et al.
        A liver-on-a-chip platform with bioprinted hepatic spheroids.
        Biofabrication. 2016; 8014101
        • Lee K.-H.
        • Lee J.
        • Lee S.-H.
        3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip.
        Lab Chip. 2015; 15: 3822-3837
        • Stucki A.O.
        • Stucki J.D.
        • Hall S.R.
        • et al.
        A lung-on-a-chip array with an integrated bio-inspired respiration mechanism.
        Lab Chip. 2015; 15: 1302-1310
        • Maschmeyer I.
        • Lorenz A.K.
        • Schimek K.
        • et al.
        A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents.
        Lab Chip. 2015; 15: 2688-2699
        • Materne E.-M.
        • Ramme A.P.
        • Terrasso A.P.
        • et al.
        A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing.
        J Biotechnol. 2015; 205: 36-46
        • Lager S.
        • Powell T.L.
        Regulation of nutrient transport across the placenta.
        J Pregnancy. 2012; 2012: 1-14
        • Syme M.R.
        • Paxton J.W.
        • Keelan J.A.
        Drug transfer and metabolism by the human placenta.
        Clin Pharmacokinet. 2004; 43: 487-514
        • Sibley C.
        Understanding placental nutrient transfer–why bother? New biomarkers of fetal growth.
        J Physiol. 2009; 587: 3431-3440
        • Spencer R.
        • Carr D.
        • David A.
        Treatment of poor placentation and the prevention of associated adverse outcomes–what does the future hold?.
        Prenatal Diagn. 2014; 34: 677-684
      6. Multi-layered placental barrier structure integrated with microfluidic channels.
        in: Miura S. Morimoto Y. Takeuchi S. 2013 IEEE 26th International conference on micro electro mechanical systems (MEMS). IEEE, 2013
        • Miura S.
        • Sato K.
        • Kato-Negishi M.
        • Teshima T.
        • Takeuchi S.
        Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6.
        Nat Commun. 2015; 6: 8871
        • Lee J.S.
        • Romero R.
        • Han Y.M.
        • et al.
        Placenta-on-a-chip: a novel platform to study the biology of the human placenta.
        Jf Maternal-Fetal Neonatal Med. 2016; 29: 1046-1054
        • Blundell C.
        • Tess E.R.
        • Schanzer A.S.
        • et al.
        A microphysiological model of the human placental barrier.
        Lab Chip. 2016; 16: 3065-3073
        • Blundell C.
        • Yi Y.S.
        • Ma L.
        • et al.
        Placental drug transport‐on‐a‐chip: a microengineered in vitro model of transporter‐mediated drug efflux in the human placental barrier.
        Adv Healthcare Mater. 2018; 71700786
        • Yin F.
        • Zhu Y.
        • Zhang M.
        • Yu H.
        • Chen W.
        • Qin J.
        A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier.
        Toxicol In Vitro. 2019; 54: 105-113
        • Mandt D.
        • Gruber P.
        • Markovic M.
        • et al.
        Fabrication of biomimetic placental barrier structures within a microfluidic device utilizing two-photon polymerization.
        Int J Bioprint. 2018; 4: 1-12
        • Hsieh Y.-C.
        • Zahn J.D.
        On-chip microdialysis system with flow-through glucose sensing capabilities.
        J Diabetes Sci Technol. 2007; 1: 375-383
        • Jung D.
        • Jung D.
        • Kong S.
        A Lab-on-a-chip-based non-invasive optical sensor for measuring glucose in saliva.
        Sensors. 2017; 17: 2607
        • Wang B.
        • Wu Y.
        • Chen Y.
        • Weng B.
        • Li C.
        Flexible paper sensor fabricated via in situ growth of Cu nanoflower on RGO sheets towards amperometrically non-enzymatic detection of glucose.
        Sens Actuators B: Chem. 2017; 238: 802-808
        • Abbas Y.
        • Oefner C.M.
        • Polacheck W.J.
        • et al.
        A microfluidics assay to study invasion of human placental trophoblast cells.
        J R Soc Interface. 2017; 1420170131
        • Yang K.
        • Wu J.
        • Peretz-Soroka H.
        • et al.
        Mkit: a cell migration assay based on microfluidic device and smartphone.
        Biosens Bioelectron. 2018; 99: 259-267
        • Kuo C.-Y.
        • Eranki A.
        • Placone J.K.
        • et al.
        Development of a 3D printed, bioengineered placenta model to evaluate the role of trophoblast migration in preeclampsia.
        ACS Biomater Sci Eng. 2016; 2: 1817-1826
        • Liu N.Q.
        • Kaplan A.T.
        • Lagishetty V.
        • et al.
        Vitamin D and the regulation of placental inflammation.
        J Immunol. 2011; 186: 5968-5974
        • Srinivas S.K.
        • Ma Y.
        • Sammel M.D.
        • et al.
        Placental inflammation and viral infection are implicated in second trimester pregnancy loss.
        Am J Obstet Gynecol. 2006; 195: 797-802
        • Zhu Y.
        • Yin F.
        • Wang H.
        • Wang L.
        • Yuan J.
        • Qin J.
        Placental barrier-on-a-chip: modeling placental inflammatory responses to bacterial infection.
        ACS Biomater Sci Engin. 2018; 4: 3356-3363
        • Abrahams V.M.
        • Bole-Aldo P.
        • Kim Y.M.
        • et al.
        Divergent trophoblast responses to bacterial products mediated by TLRs.
        J Immunol. 2004; 173: 4286-4296
        • Chen Y.
        • Pui T.S.
        • Kongsuphol P.
        • Tang K.C.
        • Arya S.K.
        Aptamer-based array electrodes for quantitative interferon-γ detection.
        Biosens Bioelectron. 2014; 53: 257-262
        • Liu Y.
        • Matharu Z.
        • Rahimian A.
        • Revzin A.
        Detecting multiple cell-secreted cytokines from the same aptamer-functionalized electrode.
        Biosens Bioelectron. 2015; 64: 43-50
        • Picollet-D'hahan N.
        Live cell analysis: when electric detection interfaces microfluidics.
        J Biochips Tissue Chips S. 2011; 1: 001
        • Ge Y.
        • Deng T.
        • Zheng X.
        Dynamic monitoring of changes in endothelial cell-substrate adhesiveness during leukocyte adhesion by microelectrical impedance assay.
        Acta Biochim Biophys Sinica. 2009; 41: 256-262
        • Sedgwick J.B.
        • Menon I.
        • Gern J.E.
        • Busse W.W.
        Effects of inflammatory cytokines on the permeability of human lung microvascular endothelial cell monolayers and differential eosinophil transmigration.
        J Allergy Clin Immunol. 2002; 110: 752-756
        • Sun T.
        • Swindle E.J.
        • Collins J.E.
        • Holloway J.A.
        • Davies D.E.
        • Morgan H.
        On-chip epithelial barrier function assays using electrical impedance spectroscopy.
        Lab Chip. 2010; 10: 1611-1617
        • Rahim S.
        • Uren A.
        A real-time electrical impedance based technique to measure invasion of endothelial cell monolayer by cancer cells.
        J Visualized Exp: JoVE. 2011; 50https://doi.org/10.3791/2792
        • Kidima W.B.
        Syncytiotrophoblast functions and fetal growth restriction during placental malaria: updates and implication for future interventions.
        Biomed Res Int. 2015; 2015451735
        • Benirschke K.
        • Kauffmann P.
        Pathology of the human placenta.
        4th ed. Springer, 2000
        • Walter P.R.
        • Garin Y.
        • Blot P.
        Placental pathologic changes in malaria. A histologic and ultrastructural study.
        Am J Pathol. 1982; 109: 330-342
        • Duffy M.F.
        • Maier A.G.
        • Byrne T.J.
        • et al.
        VAR2CSA is the principal ligand for chondroitin sulfate A in two allogeneic isolates of Plasmodium falciparum.
        Mol Biochem Parasitol. 2006; 148 (Epub 2006 Apr 7): 117-124
        • Salanti A.
        • Staalsoe T.
        • Lavstsen T.
        • et al.
        Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria.
        Mol Microbiol. 2003; 49: 179-191
        • Viebig N.K.
        • Levin E.
        • Dechavanne S.
        • et al.
        Disruption of var2csa gene impairs placental malaria associated adhesion phenotype.
        PLoS One. 2007; 2: e910
        • Jenkins N.
        • Wu Y.
        • Chakravorty S.
        • Kai O.
        • Marsh K.
        • Craig A.
        Plasmodium falciparum intercellular adhesion molecule-1-based cytoadherence-related signaling in human endothelial cells.
        J Infect Dis. 2007; 196: 321-327
        • Yipp B.G.
        • Robbins S.M.
        • Resek M.E.
        • Baruch D.I.
        • Looareesuwan S.
        • Ho M.
        Src-family kinase signaling modulates the adhesion of Plasmodium falciparum on human microvascular endothelium under flow.
        Blood. 2003; 101: 2850-2857
        • Cunnington A.J.
        • Walther M.
        • Riley E.M.
        Piecing together the puzzle of severe malaria.
        Sci Transl Med. 2013; 5 (211ps18)
        • Francischetti I.M.
        • Seydel K.B.
        • Monteiro R.Q.
        Blood coagulation, inflammation, and malaria.
        Microcirculation. 2008; 15: 81-107
        • Kim H.
        • Higgins S.
        • Liles W.C.
        • Kain K.C.
        Endothelial activation and dysregulation in malaria: a potential target for novel therapeutics.
        Curr Opin Hematol. 2011; 18: 177-185
        • van der Heyde H.C.
        • Nolan J.
        • Combes V.
        • Gramaglia I.
        • Grau G.E.
        A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction.
        Trends Parasitol. 2006; 22: 503-508
        • Galbraith R.M.
        • Fox H.
        • Hsi B.
        • Galbraith G.M.
        • Bray R.S.
        • Faulk W.P.
        The human materno-foetal relationship in malaria. II. Histological, ultrastructural and immunopathological studies of the placenta.
        Trans R Soc Trop Med Hyg. 1980; 74: 61-72
        • Fried M.
        • Duffy P.E.
        Maternal malaria and parasite adhesion.
        J Mol Med (Berl). 1998; 76: 162-171
        • Umbers A.J.
        • Aitken E.H.
        • Rogerson S.J.
        Malaria in pregnancy: small babies, big problem.
        Trends Parasitol. 2011; 27: 168-175
        • McGregor I.A.
        Thoughts on malaria in pregnancy with consideration of some factors which influence remedial strategies.
        Parassitologia. 1987; 29: 153-163
        • Duffy P.E.
        • Fried M.
        Antibodies that inhibit Plasmodium falciparum adhesion to chondroitin sulfate A are associated with increased birth weight and the gestational age of newborns.
        Infect Immun. 2003; 71: 6620-6623
        • Fried M.
        • Nosten F.
        • Brockman A.
        • Brabin B.J.
        • Duffy P.E.
        Maternal antibodies block malaria.
        Nature. 1998; 395: 851-852
        • Fried M.
        • Duffy P.E.
        Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta.
        Science. 1996; 272: 1502-1504
        • Rogerson S.J.
        • Chaiyaroj S.C.
        • Ng K.
        • Reeder J.C.
        • Brown G.V.
        Chondroitin sulfate A is a cell surface receptor for Plasmodium falciparum-infected erythrocytes.
        J Exp Med. 1995; 182: 15-20
        • Salanti A.
        • Dahlback M.
        • Turner L.
        • et al.
        Evidence for the involvement of VAR2CSA in pregnancy-associated malaria.
        J Exp Med. 2004; 200: 1197-1203
        • Castelucci M.
        • Kaufman P.
        Basic Structure of the villous trees.
        in: Benirschke K. Kaufmann P. Baergen R.N. Pathology of the human placenta. 5th ed. Springer-Verlag, New York2006: 50-120
        • Orendi K.
        • Kivity V.
        • Sammar M.
        • et al.
        Placental and trophoblastic in vitro models to study preventive and therapeutic agents for preeclampsia.
        Placenta. 2011; 32: S49-S54
        • Lybbert J.
        • Gullingsrud J.
        • Chesnokov O.
        • et al.
        Abundance of megalin and Dab2 is reduced in syncytiotrophoblast during placental malaria, which may contribute to low birth weight.
        Sci Rep. 2016; 6: 24508
      7. Vascular biology of the placenta.
        in: Wang Y. Colloquium series on integrated systems physiology: from molecule to function. Morgan & Claypool Life Sciences, 2010
        • Gullingsrud J.
        • Milman N.
        • Saveria T.
        • et al.
        High-throughput screening platform identifies small molecules that prevent sequestration of plasmodium falciparum–infected erythrocytes.
        J Infect Dis. 2014; 211: 1134-1143
        • Chua C.L.
        • Brown G.
        • Hamilton J.A.
        • Rogerson S.
        • Boeuf P.
        Monocytes and macrophages in malaria: protection or pathology?.
        Trends Parasitol. 2013; 29: 26-34
        • Menendez C.
        • Ordi J.
        • Ismail M.R.
        • et al.
        The impact of placental malaria on gestational age and birth weight.
        J Infect Dis. 2000; 181: 1740-1745
        • Silver K.L.
        • Zhong K.
        • Leke R.G.
        • Taylor D.W.
        • Kain K.C.
        Dysregulation of angiopoietins is associated with placental malaria and low birth weight.
        PLoS One. 2010; 5: e9481
        • Ataide R.
        • Murillo O.
        • Dombrowski J.G.
        • et al.
        Malaria in pregnancy interacts with and alters the angiogenic profiles of the placenta.
        PLoS Negl Trop Dis. 2015; 9e0003824
        • Umbers A.J.
        • Boeuf P.
        • Clapham C.
        • et al.
        Placental malaria-associated inflammation disturbs the insulin-like growth factor axis of fetal growth regulation.
        J Infect Dis. 2011; 203: 561-569
        • Dimasuay K.G.
        • Aitken E.H.
        • Rosario F.
        • et al.
        Inhibition of placental mTOR signaling provides a link between placental malaria and reduced birthweight.
        BMC Med. 2017; 15: 1
        • Wang J.L.
        • Anguera M.C.
        In vitro differentiation of human pluripotent stem cells into trophoblastic cells.
        J Visualized Exp: JoVE. 2017; : 55268
        • Jiang B.
        • Yan L.
        • Wang X.
        • et al.
        Concise Review: mesenchymal stem cells derived from human pluripotent cells, an unlimited and quality-controllable source for therapeutic applications.
        Stem Cells. 2019; 37: 572-581