Advertisement
Review Article| Volume 213, P67-89, November 2019

Biosensors for early diagnosis of pancreatic cancer: a review

  • Lisheng Qian
    Affiliations
    Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
    Search for articles by this author
  • Qiaobin Li
    Affiliations
    Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota
    Search for articles by this author
  • Kwaku Baryeh
    Affiliations
    Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota
    Search for articles by this author
  • Wanwei Qiu
    Affiliations
    Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
    Search for articles by this author
  • Kun Li
    Affiliations
    Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
    Search for articles by this author
  • Jing Zhang
    Affiliations
    Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
    Search for articles by this author
  • Qingcai Yu
    Affiliations
    Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
    Search for articles by this author
  • Dongqin Xu
    Affiliations
    Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
    Search for articles by this author
  • Wenju Liu
    Affiliations
    Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
    Search for articles by this author
  • Randall E. Brand
    Affiliations
    Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
    Search for articles by this author
  • Xueji Zhang
    Correspondence
    Reprint requests: Guodong Liu, Wei Chen, and Xueji Zhang, Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, PR China.
    Affiliations
    Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China

    School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, PR China
    Search for articles by this author
  • Wei Chen
    Correspondence
    Reprint requests: Guodong Liu, Wei Chen, and Xueji Zhang, Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, PR China.
    Affiliations
    Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China

    School of Food Science & Engineering, Hefei University of Technology, Hefei, Anhui, PR China
    Search for articles by this author
  • Guodong Liu
    Correspondence
    Reprint requests: Guodong Liu, Wei Chen, and Xueji Zhang, Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, PR China.
    Affiliations
    Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China

    Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota
    Search for articles by this author
Published:August 15, 2019DOI:https://doi.org/10.1016/j.trsl.2019.08.002
      Pancreatic cancer is characterized by extremely high mortality and poor prognosis and is projected to be the leading cause of cancer deaths by 2030. Due to the lack of early symptoms and appropriate methods to detect pancreatic carcinoma at an early stage as well as its aggressive progression, the disease is often quite advanced by the time a definite diagnosis is established. The 5-year relative survival rate for all stages is approximately 8%. Therefore, detection of pancreatic cancer at an early surgically resectable stage is the key to decrease mortality and to improve survival. The traditional methods for diagnosing pancreatic cancer involve an imaging test, such as ultrasound or magnetic resonance imaging, paired with a biopsy of the mass in question. These methods are often expensive, time consuming, and require trained professionals to use the instruments and analyze the imaging. To overcome these issues, biosensors have been proposed as a promising tool for the early diagnosis of pancreatic cancer. The present review critically discusses the latest developments in biosensors for the early diagnosis of pancreatic cancer. Protein and microRNA biomarkers of pancreatic cancer and corresponding biosensors for pancreatic cancer diagnosis have been reviewed, and all these cases demonstrate that the emerging biosensors are becoming an increasingly relevant alternative to traditional techniques. In addition, we discuss the existing problems in biosensors and future challenges.

      Abbreviations:

      PDAC (pancreatic ductal adenocarcinoma), PanIN (pancreatic intraepithelial neoplasia), ctDNA (circulation tumor DNA), PCR (polymerase chain reaction), ELISA (enzyme-linked immunosorbent assay), miRNAs (microRNAs), MIC (macrophage inhibitory cytokine), OPN (osteopontin), CP (chronic pancreatitis), AUC (under the curve), NCs (normal controls: NCs), PaC (Pancreatic cancer), PaCIC (pancreatic cancer-initiating cell), POC (point-of-care), EIS (electrochemical impedance spectroscopy), SERS (surface enhanced Raman scattering), SPR (surface plasmon resonance), LSPR (localized surface plasmon resonance), AuNP (gold nanoparticle), PP (pancreatic polypeptide), LFB (lateral flow Biosensor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • American Cancer Society
        Cancer facts & figures 2019.
        American Cancer Society, Atlanta2019
      1. (a)
        • Gräntzdörffer I.
        • Carl-McGrath S.
        • Ebert M.P.
        • et al.
        Proteomics of pancreatic cancer.
        Pancreas. 2008; 36: 329-336
      2. (b)
        • Bhat K.
        • Wang F.
        • Ma Q.
        • et al.
        Advances in biomarker research for pancreatic cancer.
        Curr Pharm Des. 2012; 18: 2439-2451
      3. (a)
        • Yonezawa S.
        • Higashi M.
        • Yamada N.
        • Goto M.
        Precursor lesions of pancreatic cancer.
        Gut Liver. 2008; 2: 137-154
      4. (b)
        • Liang J.J.
        • Kimchi E.T.
        • Staveley-O'Carroll K.F.
        • et al.
        Diagnostic and prognostic biomarkers in pancreatic carcinoma.
        Int J Clin Exp Pathol. 2009; 2: 1
        • Stroszczynski C.
        • Grützmann R.
        • Kittner T.
        CT and MR imaging of pancreatic cancer.
        Pancreatic Cancer. 2008; (Springer, Berlin, Heidelberg): 5-14
        • Brand R.E.
        • Nolen B.M.
        • Zeh H.J.
        • et al.
        Serum biomarker panels for the detection of pancreatic cancer.
        Clin Cancer Res. 2011; 17: 805-816
        • Islam M.T.
        • Uddin M.A.
        Biosensors, the emerging tools in the identification and detection of cancer markers.
        J Gynecol Women Health. 2017; 5555667
        • Jainish P.
        • Prittesh P.
        Biosensors and biomarkers: promising tools for cancer diagnosis.
        Int J Biosen Bioelectron. 2017; 3: 00072
        • Mittal S.
        • Kaur H.
        • Gautam N.
        • et al.
        Biosensors for breast cancer diagnosis: a review of bioreceptors, biotransducers and signal amplification strategies.
        Biosens Bioelectron. 2017; 88: 217-231
        • Bohunicky B.
        • Mousa S.A.
        Biosensors: the new wave in cancer diagnosis.
        Nanotechnol Sci Appl. 2011; 4: 1
        • Pasinszki T.
        • Krebsz M.
        • Tung T.T.
        • et al.
        Carbon nanomaterial based biosensors for non-invasive detection of cancer and disease biomarkers for clinical diagnosis.
        Sensors. 2017; 17: 1919
        • Balaji A.
        • Zhang J.
        Electrochemical and optical biosensors for early-stage cancer diagnosis by using graphene and graphene oxide.
        Cancer Nanotechnol. 2017; 8: 10
        • Li J.
        • Li S.
        • Yang C.F.
        Electrochemical biosensors for cancer biomarker detection.
        Electroanalysis. 2012; 24: 2213-2229
        • Winter J.M.
        • Yeo C.J.
        • Brody J.R.
        Diagnostic, prognostic, and predictive biomarkers in pancreatic cancer.
        J Surg Oncol. 2013; 107: 15-22
        • Bhatt A.N.
        • Mathur R.
        • Farooque A.
        • et al.
        Cancer biomarkers-current perspectives.
        Indian J Med Res. 2010; 132: 129-149
        • Fong Z.V.
        • Winter J.M.
        Biomarkers in pancreatic cancer: diagnostic, prognostic, and predictive.
        Cancer J. 2012; 18: 530-538
        • Loosen S.H.
        • Neumann U.P.
        • Trautwein C.
        • et al.
        Current and future biomarkers for pancreatic adenocarcinoma.
        Tumor Biol. 2017; 391010428317692231
        • Kunovsky L.
        • Tesarikova P.
        • Kala Z.
        • et al.
        The use of biomarkers in early diagnostics of pancreatic cancer.
        Can J Gastroenterol. 2018; 2018
        • Zhang X.
        • Shi S.
        • Zhang B.
        • et al.
        Circulating biomarkers for early diagnosis of pancreatic cancer: facts and hopes.
        Am J Cancer Res. 2018; 8: 332
        • Bernard V.
        • Kim D.U.
        • San Lucas F.A.
        • et al.
        Circulating nucleic acids are associated with outcomes of patients with pancreatic cancer.
        Gastroenterology. 2019; 156 (108–118.e4)
        • Cohen J.D.
        • Javed A.A.
        • Thoburn C.
        • et al.
        Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers.
        Proc Natl Acad Sci. 2017; 114: 10202-10207
        • Yuan W.
        • Tang W.
        • Xie Y.
        • et al.
        New combined microRNA and protein plasmatic biomarker panel for pancreatic cancer.
        Oncotarget. 2016; 7: 80033
        • Madhavan B.
        • Yue S.
        • Galli U.
        • et al.
        Combined evaluation of a panel of protein and miRNA serum‐exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity.
        Int J Cancer. 2015; 136: 2616-2627
        • Xiao D.
        • Ohlendorf J.
        • Chen Y.
        • et al.
        Identifying mRNA, microRNA and protein profiles of melanoma exosomes.
        Plos One. 2012; 7: e46874
        • Sempere L.F.
        Integrating contextual miRNA and protein signatures for diagnostic and treatment decisions in cancer.
        Expert Rev Mol Diagn. 2011; 11: 813-827
        • Liu J.
        • Gao J.
        • Du Y.
        • et al.
        Combination of plasma microRNAs with serum CA19‐9 for early detection of pancreatic cancer.
        Int J Cancer. 2012; 131: 683-691
        • Nielsen B.S.
        • Holmstrøm K.
        Combined microRNA in situ hybridization and immunohistochemical detection of protein markers.
        Target Identif Valid Drug Discovery. 2013; (Humana Press, Totowa, NJ): 353-365
        • Chang S.T.
        • Zahn J.M.
        • Horecka J.
        • et al.
        Identification of a biomarker panel using a multiplex proximity ligation assay improves accuracy of pancreatic cancer diagnosis.
        J Transl Med. 2009; 7: 105
        • Wang C.
        • Sun Z.
        • Ma L.
        • et al.
        Simultaneous detection of multiple biomarkers with over three orders of concentration difference using phase change nanoparticles.
        Anal Chem. 2011; 83: 2215-2219
        • Frei A.P.
        • Bava F.A.
        • Zunder E.R.
        • et al.
        Highly multiplexed simultaneous detection of RNAs and proteins in single cells.
        Nat Methods. 2016; 13: 269
        • Ladd J.
        • Taylor A.D.
        • Piliarik M.
        • et al.
        Hybrid surface platform for the simultaneous detection of proteins and DNAs using a surface plasmon resonance imaging sensor.
        Anal Chem. 2008; 80: 4231-4236
        • Li Y.
        • Qi X.
        • Lei C.
        • et al.
        Simultaneous SERS detection and imaging of two biomarkers on the cancer cell surface by self-assembly of branched DNA—gold nanoaggregates.
        Chem Commun. 2014; 50: 9907-9909
        • Hamada S.
        • Shimosegawa T.
        Biomarkers of pancreatic cancer.
        Pancreatology. 2011; 11: 14-19
        • Wu E.
        • Zhou S.
        • Bhat K.
        • et al.
        CA 19-9 and pancreatic cancer.
        Clin Adv Hematol Oncol. 2013; 11: 53
        • Goonetilleke K.S.
        • Siriwardena A.K.
        Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer.
        Eur J Surg Oncol. 2007; 33: 266-270
        • Singh S.
        • Tang S.
        • Sreenarasimhaiah J.
        • et al.
        The clinical utility and limitations of serum carbohydrate antigen (CA19-9) as a diagnostic tool for pancreatic cancer and cholangiocarcinoma.
        Digest Dis Sci. 2011; 56: 2491-2496
        • Zhang S.
        • Wang Y.M.
        • Sun C.D.
        • et al.
        Clinical value of serum CA19-9 levels in evaluating resectability of pancreatic carcinoma.
        World J Gastroenterol. 2008; 14: 3750
      5. (a)
        • Gold D.V.
        • Modrak D.E.
        • Ying Z.
        • et al.
        New MUC1 serum immunoassay differentiates pancreatic cancer from pancreatitis.
        J Clin Oncol. 2006; 24: 252-258
      6. (b)
        • Gold D.V.
        • Karanjawala Z.
        • Modrak D.E.
        • et al.
        PAM4-reactive MUC1 is a biomarker for early pancreatic adenocarcinoma.
        Clin Cancer Res. 2007; 13: 7380-7387
      7. (a)
        • Chakraborty S.
        • Jain M.
        • Sasson A.R.
        • et al.
        MUC4 as a diagnostic marker in cancer.
        Expert Opin Med Diagn. 2008; 2: 891-910
      8. (b)
        • Singh A.P.
        • Chaturvedi P.
        • Batra S.K.
        Emerging roles of MUC4 in cancer: a novel target for diagnosis and therapy.
        Cancer Res. 2007; 67: 433-436
      9. (c)
        • Suh H.
        • Pillai K.
        • Morris D.L.
        Mucins in pancreatic cancer: biological role, implications in carcinogenesis and applications in diagnosis and therapy.
        Am J Cancer Res. 2017; 7: 1372
      10. (d)
        • Jhala N.
        • Jhala D.
        • Vickers S.M.
        • et al.
        Biomarkers in diagnosis of pancreatic carcinoma in fine-needle aspirates: a translational research application.
        Am J Clin Pathol. 2006; 126: 572-579
        • Simeone D.M.
        • Ji B.
        • Banerjee M.
        • et al.
        CEACAM1, a novel serum biomarker for pancreatic cancer.
        Pancreas. 2007; 34: 436-443
        • Mroczko B.
        • Lukaszewicz-Zajac M.
        • Wereszczynska-Siemiatkowska U.
        • et al.
        Clinical significance of the measurements of serum matrix metalloproteinase-9 and its inhibitor (tissue inhibitor of metalloproteinase-1) in patients with pancreatic cancer: metalloproteinase-9 as an independent prognostic factor.
        Pancreas. 2009; 38: 613-618
        • Joergensen M.T.
        • Brünner N.
        • De Muckadell O.B.S.
        Comparison of circulating MMP-9, TIMP-1 and CA19-9 in the detection of pancreatic cancer.
        Anticancer Res. 2010; 30: 587-592
        • Koopmann J.
        • Rosenzweig C.N.W.
        • Zhang Z.
        • et al.
        Serum markers in patients with resectable pancreatic adenocarcinoma: macrophage inhibitory cytokine 1 versus CA19-9.
        Clin Cancer Res. 2006; 12: 442-446
        • Mohamed A.
        • Saad Y.
        • Saleh D.
        • et al.
        Can serum ICAM 1 distinguish pancreatic cancer from chronic pancreatitis?.
        Asian Pac J Cancer Prev. 2016; 17: 4671
        • Koopmann J.
        • Fedarko N.S.
        • Jain A.
        • et al.
        Evaluation of osteopontin as biomarker for pancreatic adenocarcinoma.
        Cancer Epidemiol Biomarkers Prev. 2004; 13: 487-491
        • Slesak B.
        • Harlozinska‐Szmyrka A.
        • Knast W.
        • et al.
        Tissue polypeptide specific antigen (TPS), a marker for differentiation between pancreatic carcinoma and chronic pancreatitis: a comparative study with CA 19‐9.
        Cancer. 2000; 89: 83-88
        • Moniaux N.
        • Chakraborty S.
        • Yalniz M.
        • et al.
        Early diagnosis of pancreatic cancer: neutrophil gelatinase-associated lipocalin as a marker of pancreatic intraepithelial neoplasia.
        Brit J Cancer. 2008; 98: 1540
        • Kim J.
        • Bamlet W.R.
        • Oberg A.L.
        • et al.
        Detection of early pancreatic ductal adenocarcinoma with thrombospondin-2 and CA19-9 blood markers.
        Sci Transl Med. 2017; 9: eaah5583
        • Matsugi S.
        • Hamada T.
        • Shioi N.
        • et al.
        Serum carboxypeptidase A activity as a biomarker for early-stage pancreatic carcinoma.
        Clin Chim Acta. 2007; 378: 147-153
      11. (a)
        • Haglund C.
        • Lundin J.
        • Kuusela P.
        • et al.
        CA 242, a new tumour marker for pancreatic cancer: a comparison with CA 19-9, CA 50 and CEA.
        Brit J Cancer. 1994; 70: 487
      12. (b)
        • Ni X.G.
        • Bai X.F.
        • Mao Y.L.
        • et al.
        The clinical value of serum CEA, CA19-9, and CA242 in the diagnosis and prognosis of pancreatic cancer.
        Eur J Surg Oncol. 2005; 31: 164-169
        • Friess H.
        • Büchler M.
        • Auerbach B.
        • et al.
        CA 494—a new tumor marker for the diagnosis of pancreatic cancer.
        Int J Cancer. 1993; 53: 759-763
        • Yoneyama T.
        • Ohtsuki S.
        • Honda K.
        • et al.
        Identification of IGFBP2 and IGFBP3 as compensatory biomarkers for CA19-9 in early-stage pancreatic cancer using a combination of antibody-based and LC-MS/MS-based proteomics.
        Plos One. 2016; 11e0161009
        • Miyoshi E.
        • Nakano M.
        Fucosylated haptoglobin is a novel marker for pancreatic cancer: detailed analyses of oligosaccharide structures.
        Proteomics. 2008; 8: 3257-3262
        • Kuhlmann K.F.D.
        • Van Till J.W.O.
        • Boermeester M.A.
        • et al.
        Evaluation of matrix metalloproteinase 7 in plasma and pancreatic juice as a biomarker for pancreatic cancer.
        Cancer Epidemiol Biomarkers Prev. 2007; 16: 886-891
        • Ge X.
        • Zhang X.
        • Li M.
        • et al.
        The value of serum HE4 in pancreatic adenocarcinoma diagnosis.
        Int J Clin Exp Pathol. 2017; 10: 5618-5623
      13. (a)
        • Makawita S.
        • Dimitromanolakis A.
        • Soosaipillai A.
        • et al.
        Validation of four candidate pancreatic cancer serological biomarkers that improve the performance of CA19. 9.
        BMC Cancer. 2013; 13: 404
      14. (b)
        • Kaur S.
        • Smith L.M.
        • Patel A.
        • et al.
        A combination of MUC5AC and CA19-9 improves the diagnosis of pancreatic cancer: a multicenter study.
        Am J Gastroenterol. 2017; 112: 172
      15. (c)
        • BŘnger S.
        • Laubert T.
        • Roblick U.J.
        • et al.
        Serum biomarkers for improved diagnostic of pancreatic cancer: a current overview.
        J Cancer Res Clin. 2011; 137: 375-389
      16. (d)
        • Winter J.M.
        • Yeo C.J.
        • Brody J.R.
        Diagnostic, prognostic, and predictive biomarkers in pancreatic cancer.
        J Surg Oncol. 2013; 107: 15-22
      17. (e)
        • Locker G.Y.
        • Hamilton S.
        • Harris J.
        • et al.
        ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer.
        J Clin Oncol. 2006; 24: 5313-5327
      18. (f)
        • Kunovsky L.
        • Tesarikova P.
        • Kala Z.
        • et al.
        The use of biomarkers in early diagnostics of pancreatic cancer.
        Can J Gastroenterol. 2018; 2018
        • He Y.
        • Lin J.
        • Kong D.
        • et al.
        Current state of circulating microRNAs as cancer biomarkers.
        Clin chem. 2015; 61: 1138-1155
        • Dong H.
        • Lei J.
        • Ding L.
        • et al.
        MicroRNA: function, detection, and bioanalysis.
        Chem Rev. 2013; 113: 6207-6233
        • Wittmann J.
        • Jäck H.M.
        Serum microRNAs as powerful cancer biomarkers.
        BBA Rev Cancer. 2010; 1806: 200-207
        • Wang J.
        • Sen S.
        MicroRNA functional network in pancreatic cancer: from biology to biomarkers of disease.
        J Biosciences. 2011; 36: 481-491
        • Zhang L.
        • Jamaluddin M.S.
        • Weakley S.M.
        • et al.
        Roles and mechanisms of microRNAs in pancreatic cancer.
        World J Surg. 2011; 35: 1725-1731
        • Zhu C.
        • Ren C.
        • Han J.
        • et al.
        A five-microRNA panel in plasma was identified as potential biomarker for early detection of gastric cancer.
        Brit J Cancer. 2014; 110: 2291
        • Chim S.S.C.
        • Shing T.K.F.
        • Hung E.C.W.
        • et al.
        Detection and characterization of placental microRNAs in maternal plasma.
        Clin Chem. 2008; 54: 482-490
      19. (a)
        • Mitchell P.S.
        • Parkin R.K.
        • Kroh E.M.
        • et al.
        Circulating microRNAs as stable blood-based markers for cancer detection.
        Proc Natl Acad Sci. 2008; 105: 10513-10518
      20. (b)
        • De Guire V.
        • Robitaille R.
        • Tetreault N.
        • et al.
        Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: promises and challenges.
        Clin Biochem. 2013; 46: 846-860
        • Lawrie C.H.
        • Gal S.
        • Dunlop H.M.
        • et al.
        Detection of elevated levels of tumour‐associated microRNAs in serum of patients with diffuse large B‐cell lymphoma.
        Brit J Haematol. 2008; 141: 672-675
        • Schwarzenbach H.
        • Nishida N.
        • Calin G.A.
        • et al.
        Clinical relevance of circulating cell-free microRNAs in cancer.
        Nat Rev Clin Oncol. 2014; 11: 145
        • Szafranska A.E.
        • Doleshal M.
        • Edmunds H.S.
        • et al.
        Analysis of microRNAs in pancreatic fine-needle aspirates can classify benign and malignant tissues.
        Clin Chem. 2008; 54: 1716-1724
      21. (a)
        • Wang J.
        • Chen J.
        • Chang P.
        • et al.
        MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease.
        Cancer Prev Res. 2009; 2: 807-813
      22. (b)
        • Ho A.S.
        • Huang X.
        • Cao H.
        • et al.
        Circulating miR-210 as a novel hypoxia marker in pancreatic cancer.
        Transl Oncol. 2010; 3: 109-113
      23. (c)
        • Xu J.
        • Cao Z.
        • Liu W.
        • et al.
        Plasma miRNAs effectively distinguish patients with pancreatic cancer from controls: a multicenter study.
        Ann Surg. 2016; 263: 1173-1179
      24. (d)
        • Hussein N.A.E.M.
        • El Kholy Z.A.
        • Anwar M.M.
        • et al.
        Plasma miR-22-3p, miR-642b-3p and miR-885-5p as diagnostic biomarkers for pancreatic cancer.
        J Cancer Res Clin. 2017; 143: 83-93
      25. (a)
        • Slater E.P.
        • Strauch K.
        • Rospleszcz S.
        • et al.
        MicroRNA-196a and-196b as potential biomarkers for the early detection of familial pancreatic cancer.
        Transl Oncol. 2014; 7: 464-471
      26. (b)
        • Liu R.
        • Chen X.
        • Du Y.
        • et al.
        Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer.
        Clin Chem. 2012; 58: 610-618
      27. (c)
        • Qu K.
        • Zhang X.
        • Lin T.
        • et al.
        Circulating miRNA-21-5p as a diagnostic biomarker for pancreatic cancer: evidence from comprehensive miRNA expression profiling analysis and clinical validation.
        Sci Rep. 2017; 7: 1692
      28. (a)
        • Humeau M.
        • Vignolle-Vidoni A.
        • Sicard F.
        • et al.
        Salivary microRNA in pancreatic cancer patients.
        PloS One. 2015; 10e0130996
      29. (b)
        • Debernardi S.
        • Massat N.J.
        • Radon T.P.
        • et al.
        Noninvasive urinary miRNA biomarkers for early detection of pancreatic adenocarcinoma.
        Am J Cancer Res. 2015; 5: 3455-3466
      30. (c)
        • Wang J.
        • Raimondo M.
        • Guha S.
        • et al.
        Circulating microRNAs in pancreatic juice as candidate biomarkers of pancreatic cancer.
        J Cancer. 2014; 5: 696-705
      31. (d)
        • Zöller M.
        • Yue S.
        • Madhavan B.
        • et al.
        991: highly sensitive pancreatic cancer diagnosis by serum exosome stem cell and miRNA markers.
        Eur J Cancer. 2014; 50: S241
      32. (a)
        • Giovannetti E.
        • Funel N.
        • Peters G.J.
        • et al.
        MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity.
        Cancer Res. 2010; 70: 4528-4538
      33. (b)
        • Rieu M.C.
        • Torrisani J.
        • Selves J.
        • et al.
        MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma precursor lesions.
        Clin Chem. 2010; 56: 603-612
      34. (c)
        • Zhang Y.
        • Li M.
        • Wang H.
        • et al.
        Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis.
        World J Surg. 2009; 33: 698-709
        • Liu J.
        • Gao J.
        • Du Y.
        • et al.
        Combination of plasma microRNAs with serum CA19‐9 for early detection of pancreatic cancer.
        Int J Cancer. 2012; 131: 683-691
        • Schultz N.A.
        • Dehlendorff C.
        • Jensen B.V.
        • et al.
        MicroRNA biomarkers in whole blood for detection of pancreatic cancer.
        JAMA. 2014; 311: 392-404https://doi.org/10.1001/jama.2013.284664
      35. (a)
        • Loor R.
        • Kuriyama M.
        • Bodziak M.L.
        • et al.
        Simultaneous evaluation of a pancreas-specific antigen and a pancreatic cancer-associated antigen in pancreatic carcinoma.
        Cancer Research. 1984; 44: 3604-3607
      36. (b)
        • Tampoia M.
        • Giavarina D.
        • Di Giorgio C.
        • et al.
        Diagnostic accuracy of enzyme-linked immunosorbent assays (ELISA) to detect anti-skin autoantibodies in autoimmune blistering skin diseases: a systematic review and meta-analysis.
        Autoimmun Rev. 2012; 12: 121-126
        • Stern P.
        • Friedecky B.
        • Bartos V.
        • et al.
        Comparison of different immunoassays for CA 19-9.
        Clin Chem Lab Med. 2001; 39: 1278-1282
      37. (a)
        • Tian T.
        • Wang J.
        • Zhou X.
        A review: microRNA detection methods.
        Org Biomol Chem. 2015; 13: 2226-2238
      38. (b)
        • Hunt E.A.
        • Broyles D.
        • Head T.
        • et al.
        MicroRNA detection: current technology and research strategies.
        Annu Rev Anal Chem. 2015; 8: 217-237
        • Planell-Saguer M.
        • Rodicio M.C.
        Detection methods for microRNAs in clinic practice.
        Clin Biochem. 2013; 46: 869-878
        • Cissell K.A.
        • Rahimi Y.
        • Shrestha S.
        • et al.
        Bioluminescence-based detection of microRNA, miR21 in breast cancer cells.
        Anal Chem. 2008; 80: 2319-2325
        • Cissell K.A.
        • Deo S.K.
        Trends in microRNA detection.
        Anal Bioanal Chem. 2009; 394: 1109-1116
        • Nelson P.T.
        • Baldwin D.A.
        • Scearce L.M.
        • et al.
        Microarray-based, high-throughput gene expression profiling of microRNAs.
        Nat Methods. 2004; 1: 155
        • Castoldi M.
        • Schmidt S.
        • Benes V.
        • et al.
        A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA).
        RNA. 2006; 12: 913-920
        • Hammond S.M.
        microRNA detection comes of age.
        Nat Methods. 2006; 3: 12
        • Válóczi A.
        • Hornyik C.
        • Varga N.
        • et al.
        Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes.
        Nucleic Acids Res. 2004; 32: e175
        • Ramkissoon S.H.
        • Mainwaring L.A.
        • Sloand E.M.
        • et al.
        Nonisotopic detection of microRNA using digoxigenin labeled RNA probes.
        Mol Cell Probe. 2006; 20: 1-4
        • Gao Z.
        • Yang Z.
        Detection of microRNAs using electrocatalytic nanoparticle tags.
        Anal Chem. 2006; 78: 1470-1477
        • Neely L.A.
        • Patel S.
        • Garver J.
        • et al.
        A single-molecule method for the quantitation of microRNA gene expression.
        Nat Methods. 2006; 3: 41
        • Nelson P.T.
        • Baldwin D.A.
        • Kloosterman W.P.
        • et al.
        RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain.
        RNA. 2006; 12: 187-191
        • Liang R.Q.
        • Li W.
        • Li Y.
        • et al.
        An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe.
        Nucleic Acids Res. 2005; 33: e17
        • Kolhe S.
        • Parikh K.
        Application of nanotechnology in cancer: a review.
        Int J Bioinform Res Appl. 2012; 8: 112-125
        • Kuhlmeier D.
        • Sandetskaya N.
        • Allelein S.
        Application of nanotechnology in miniaturized systems and its use in medical and food analysis.
        Recent Pat Food Nutr Agric. 2012; 4: 187-199
        • Choi Y.E.
        • Kwak J.W.
        • Park J.W.
        Nanotechnology for early cancer detection.
        Sensors. 2010; 10: 428-455
        • Mohammed M.I.
        • Desmulliez M.P.Y.
        Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: a review.
        Lab Chip. 2011; 11: 569-595
        • Borrebaeck C.A.K.
        Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer.
        Nat Rev Cancer. 2017; 17: 199
        • Wu L.
        • Qu X.
        Cancer biomarker detection: recent achievements and challenges.
        Chem Soc Rev. 2015; 44: 2963-2997
        • Chikkaveeraiah B.V.
        • Bhirde A.A.
        • Morgan N.Y.
        • et al.
        Electrochemical immunosensors for detection of cancer protein biomarkers.
        ACS Nano. 2012; 6: 6546-6561
        • Lin J.
        • Yan F.
        • Hu X.
        • et al.
        Chemiluminescent immunosensor for CA19-9 based on antigen immobilization on a cross-linked chitosan membrane.
        J Immunol Methods. 2004; 291: 165-174
        • Ding Y.
        • Liu J.
        • Jin X.
        • et al.
        Poly-L-lysine/hydroxyapatite/carbon nanotube hybrid nanocomposite applied for piezoelectric immunoassay of carbohydrate antigen 19-9.
        Analyst. 2008; 133: 184-190
        • Du D.
        • Xu X.
        • Wang S.
        • et al.
        Reagentless amperometric carbohydrate antigen 19-9 immunosensor based on direct electrochemistry of immobilized horseradish peroxidase.
        Talanta. 2007; 71: 1257-1262
        • Liu G.
        • Lin Y.Y.
        • Wang J.
        • et al.
        Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip.
        Anal Chem. 2007; 79: 7644-7653
        • Lin Y.Y.
        • Wang J.
        • Liu G.
        • et al.
        A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen.
        Biosen Bioelectron. 2008; 23: 1659-1665
        • Mao X.
        • Baloda M.
        • Gurung A.S.
        • et al.
        Multiplex electrochemical immunoassay using gold nanoparticle probes and immunochromatographic strips.
        Electrochem Commun. 2008; 10: 1636-1640
        • Kim J.H.
        • Cho J.H.
        • Cha G.S.
        • et al.
        Conductimetric membrane strip immunosensor with polyaniline-bound gold colloids as signal generator.
        Biosens Bioelectron. 2000; 14: 907-915
        • Muhammad-Tahir Z.
        • Alocilja E.C.
        A conductometric biosensor for biosecurity.
        Biosens Bioelectron. 2003; 18: 813-819
        • Peck R.B.
        • Schweizer J.
        • Weigl B.H.
        • et al.
        A magnetic immunochromatographic strip test for detection of human papillomavirus 16 E6.
        Clin Chem. 2006; 52: 2170-2172
        • Ge Z.
        • Lin M.
        • Wang P.
        • et al.
        Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor.
        Anal Chem. 2014; 86: 2124-2130
        • Yang C.
        • Shi K.
        • Dou B.
        • et al.
        In situ DNA-templated synthesis of sliver nanoclusters for ultrasensitive and label free electrochemical detection of microRNA.
        ACS Appl Mater Interfaces. 2015; 7: 1188-1193
        • Miao P.
        • Wang B.
        • Meng F.
        • et al.
        Ultrasensitive detection of microRNA through rolling circle amplification on a DNA tetrahedron decorated electrode.
        Bioconjugate Chem. 2015; 26: 602-607
        • Liu H.
        • Li L.
        • Wang Q.
        • et al.
        Graphene fluorescence switch-based cooperative amplification: a sensitive and accurate method to detection MicroRNA.
        Anal Chem. 2014; 86: 5487-5493
        • Lu W.
        • Chen Y.
        • Liu Z.
        • et al.
        Quantitative detection of microRNA in one step via next generation magnetic relaxation switch sensing.
        ACA Nano. 2016; 10: 6685-6692
        • Zhou W.
        • Tian Y.
        • Yin B.
        • et al.
        Simultaneous surface-enhanced Raman spectroscopy detection of multiplexed microRNA biomarkers.
        Anal Chem. 2017; 89: 6120-6128
        • Joshi G.K.
        • Deitz-McElyea S.
        • Johnson M.
        • et al.
        Highly specific plasmonic biosensors for ultrasensitive microRNA detection in plasma from pancreatic cancer patients.
        Nano Lett. 2014; 14: 6955-6963
        • Wang J.
        Electrochemical biosensors: towards point-of-care cancer diagnostics.
        Biosens Bioelectron. 2006; 21: 1887-1892
        • Guo A.
        • Li Y.
        • Cao W.
        • et al.
        An electrochemical immunosensor for ultrasensitive detection of carbohydrate antigen 199 based on [email protected] CuxOS yolk-shell nanostructures with porous shells as labels.
        Biosens Bioelectron. 2015; 63: 39-46
        • Yu Y.
        • Zhang Q.
        • Buscaglia J.
        • et al.
        Quantitative real-time detection of carcinoembryonic antigen (CEA) from pancreatic cyst fluid using 3-D surface molecular imprinting.
        Analyst. 2016; 141: 4424-4431
        • Soares A.C.
        • Soares J.C.
        • Shimizu F.M.
        • et al.
        A simple architecture with self-assembled monolayers to build immunosensors for detecting the pancreatic cancer biomarker CA19-9.
        Analyst. 2018; 143: 3302-3308
        • Thapa A.
        • Soares A.C.
        • Soares J.C.
        • et al.
        Carbon nanotube matrix for highly sensitive biosensors to detect pancreatic cancer biomarker CA19-9.
        ACS Appl Mater Inter. 2017; 9: 25878-25886
        • Soares J.C.
        • Iwaki L.E.O.
        • Soares A.C.
        • et al.
        Immunosensor for pancreatic cancer based on electrospun nanofibers coated with carbon nanotubes or gold nanoparticles.
        ACS Omega. 2017; 2: 6975-6983
        • Chiriacò M.S.
        • Primiceri E.
        • Monteduro A.G.
        • et al.
        Towards pancreatic cancer diagnosis using EIS biochips.
        Lab Chip. 2013; 13: 730-734
        • Soares J.C.
        • Soares A.C.
        • Pereira P.A.R.
        • et al.
        Adsorption according to the Langmuir–Freundlich model is the detection mechanism of the antigen p53 for early diagnosis of cancer.
        Phys Chem Chem Phys. 2016; 18: 8412-8418
        • Soares A.C.
        • Soares J.C.
        • Shimizu F.M.
        • et al.
        Controlled film architectures to detect a biomarker for pancreatic cancer using impedance spectroscopy.
        ACS Appl Mater Interfaces. 2015; 7: 25930-25937
        • Ibáñez-Redín G.
        • Furuta R.H.M.
        • Wilson D.
        • et al.
        Screen-printed interdigitated electrodes modified with nanostructured carbon nano-onion films for detecting the cancer biomarker CA19-9.
        Mat Sci Eng C Mater Biol Appl. 2019; 99: 1502-1508
        • Dai Y.
        • Abbasi K.
        • DePietro M.
        • et al.
        Advanced fabrication of biosensor on detection of Glypican-1 using S-acetylmercaptosuccinic anhydride (SAMSA) modification of antibody.
        Sci Rep. 2018; 8: 13541
        • Xu H.
        • Wang Y.
        • Wang L.
        • et al.
        A label-free microelectrode array based on one-step synthesis of chitosan-multi-walled carbon nanotube-thionine for ultrasensitive detection of carcinoembryonic antigen.
        Nanomaterials. 2016; 6: 132
        • Guo J.
        • Yuan C.
        • Yan Q.
        • et al.
        An electrochemical biosensor for microRNA-196a detection based on cyclic enzymatic signal amplification and template-free DNA extension reaction with the adsorption of methylene blue.
        Biosens Bioelectron. 2018; 105: 103-108
        • Li J.
        • Chen Z.
        • Xiang Y.
        • et al.
        An electrochemical biosensor for double-stranded Wnt7B gene detection based on enzymatic isothermal amplification.
        Biosens Bioelectron. 2016; 86: 75-82
        • Gu B.
        • Xu C.
        • Yang C.
        • et al.
        ZnO quantum dot labeled immunosensor for carbohydrate antigen 19-9.
        Biosen Bioelectron. 2011; 26: 2720-2723
        • Rong Q.
        • Feng F.
        • Ma Z.
        Metal ions doped chitosan–poly (acrylic acid) nanospheres: synthesis and their application in simultaneously electrochemical detection of four markers of pancreatic cancer.
        Biosen Bioelectron. 2016; 75: 148-154
        • Dackson Gudagunti F.
        • Velmanickam L.
        • Nawarathna D.
        • et al.
        Label-free biosensing method for the detection of a pancreatic cancer biomarker based on dielectrophoresis spectroscopy.
        Chemosensors. 2018; 6: 33
        • Damborský P.
        • Švitel J.
        • Katrlík J.
        Optical biosensors.
        Essays Biochem. 2016; 60: 91-100
        • Borisov S.M.
        • Wolfbeis O.S.
        Optical biosensors.
        Chem Rev. 2008; 108: 423-461
        • Griffin S.
        Biosensors for cancer detection applications.
        Missouri S&T Peer Peer. 2017; 1: 6
        • Moon H.S.
        • Ko J.H.
        • Song H.S.
        • et al.
        Advanced chemiluminescent immunoassay for the early diagnosis of pancreatic cancer.
        J Ind Inf Technol Appl. 2018; 2: 70-75
        • Abu-Salah K.
        • Zourob M.
        • Mouffouk F.
        • et al.
        DNA-based nanobiosensors as an emerging platform for detection of disease.
        Sensors. 2015; 15: 14539-14568
        • Kalubowilage M.
        • Covarrubias-Zambrano O.
        • Malalasekera A.P.
        • et al.
        Early detection of pancreatic cancers in liquid biopsies by ultrasensitive fluorescence nanobiosensors.
        Nanomed Nanotechnol. 2018; 14: 1823-1832
        • Kumeria T.
        • Kurkuri M.D.
        • Diener K.R.
        • et al.
        Label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells.
        Biosen Bioelectron. 2012; 35: 167-173
        • Mejía-Salazar J.R.
        • Oliveira O.N.
        Plasmonic biosensing: focus review.
        Chem Rev. 2018; 118: 10617-10625
        • Lopez G.A.
        • Estevez M.C.
        • Soler M.
        • et al.
        Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration.
        Nanophotonics. 2017; 6: 123-136
        • Barizuddin S.
        • Bok S.
        • Gangopadhyay S.
        Plasmonic sensors for disease detection—a review.
        J Nanomed Nanotechnol. 2016; 71000373
        • Joshi G.K.
        • Deitz-McElyea S.
        • Johnson M.
        • et al.
        Highly specific plasmonic biosensors for ultrasensitive microRNA detection in plasma from pancreatic cancer patients.
        Nano Lett. 2014; 14: 6955-6963
        • Joshi G.K.
        • Deitz-McElyea S.
        • Liyanage T.
        • et al.
        Label-free nanoplasmonic-based short noncoding RNA sensing at attomolar concentrations allows for quantitative and highly specific assay of microRNA-10b in biological fluids and circulating exosomes.
        ACS Nano. 2015; 9: 11075-11089
        • Jawad Z.A.R.
        • Theodorou I.G.
        • Jiao L.R.
        • et al.
        Highly sensitive plasmonic detection of the pancreatic cancer biomarker CA 19-9.
        Sci Rep. 2017; 7: 14309
        • Liang K.
        • Liu F.
        • Fan J.
        • et al.
        Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring.
        Nat Biomed Eng. 2017; 1: 0021
        • Procházka M.
        Surface-enhanced Raman spectroscopy.
        Surface-enhanced Raman spectroscopy. 2016
        • Faulds K.
        • Smith W.E.
        • Graham D.
        • et al.
        Assessment of silver and gold substrates for the detection of amphetamine sulfate by surface enhanced Raman scattering (SERS).
        Analyst. 2002; 127: 282-286
        • Li M.
        • Cushing S K.
        • Zhang J.
        • et al.
        Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma.
        ACS Nano. 2013; 7: 4967-4976
        • Chisanga M.
        • Muhamadali H.
        • Ellis D.I.
        • et al.
        Enhancing disease diagnosis: biomedical applications of surface-enhanced Raman scattering.
        Appl Sci. 2019; 9: 1163
        • Wang G.
        • Lipert R.J.
        • Jain M.
        • et al.
        Detection of the potential pancreatic cancer marker MUC4 in serum using surface-enhanced Raman scattering.
        Anal Chem. 2011; 83: 2554-2561
        • Ito H.
        • Hasegawa K.
        • Hasegawa Y.
        • et al.
        Simple blood test for diagnosis of gastrointestinal and pancreas cancer using surface-enhanced Raman scattering.
        J Clin Oncol. 2015; 33: 32
        • Banaei N.
        • Foley A.
        • Houghton J.M.
        • et al.
        Multiplex detection of pancreatic cancer biomarkers using a SERS-based immunoassay.
        Nanotechnology. 2017; 28455101
        • Pang Y.
        • Wang C.
        • Lu L.
        • et al.
        Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer.
        Biosen Bioelectron. 2019; 130: 204-213
        • Carmicheal J.
        • Hayashi C.
        • Huang X.
        • et al.
        Label-free characterization of exosome via surface enhanced Raman spectroscopy for the early detection of pancreatic cancer.
        Nanomed Nanotechnol. 2019; 16: 88-96
        • He S.
        • Liu D.B.
        • Wang Z.
        • et al.
        Utilization of unmodified gold nanoparticles in colorimetric detection.
        Sci China Phys Mech Astron. 2011; 54: 1757-1765
        • Li J.
        • Fu H.E.
        • Wu L.J.
        • et al.
        General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe.
        Anal Chem. 2012; 84: 5309-5315
        • Zhao H.
        • Qu Y.
        • Yuan F.
        • et al.
        A visible and label-free colorimetric sensor for miRNA-21 detection based on peroxidase-like activity of graphene/gold-nanoparticle hybrids.
        Anal Methods. 2016; 8: 2005-2012
        • Xiao L.
        • Zhu A.
        • Xu Q.
        • et al.
        Colorimetric biosensor for detection of cancer biomarker by Au nanoparticle-decorated Bi2Se3 nanosheets.
        ACS Appl Mater Interfaces. 2017; 9: 6931-6940
        • Ali A.S.M.
        • El-Halawany M.S.
        • Ibrahim S.A.
        • et al.
        Aptasensor for quantifying pancreatic polypeptide.
        ACS Omega. 2019; 4: 2948-2956
        • Zeng Q.
        • Mao X.
        • Xu H.
        • et al.
        Quantitative immunochromatographic strip biosensor for the detection of carcinoembryonic antigen tumor biomarker in human plasma.
        Am J Biomed Sci. 2009; 1: 70-79
        • Mao X.
        • Ma Y.
        • Zhang A.
        • et al.
        Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip.
        Anal Chem. 2009; 81: 1660-1668
        • Takalkar S.
        • Xu H.
        • Chen J.
        • et al.
        Gold nanoparticle coated silica nanorods for sensitive visual detection of microRNA on a lateral flow strip biosensor.
        Anal Sci. 2016; 32: 617-622
        • Liu G.
        • Mao X.
        • Phillips J.A.
        • et al.
        Aptamer- nanoparticle strip biosensor for sensitive detection of cancer cells.
        Anal Chem. 2009; 81: 10013-10018
        • Qiu W.
        • Xu H.
        • Takalkar S.
        • et al.
        Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence.
        Biosen Bioelectron. 2015; 64: 367-372
        • Xu H.
        • Chen J.
        • Birrenkott J.
        • et al.
        Gold-nanoparticle-decorated silica nanorods for sensitive visual detection of proteins.
        Anal Chem. 2014; 86: 7351-7359
        • Yang Y.
        • Ozsoz M.
        • Liu G.
        Gold nanocage-based lateral flow immunoassay for immunoglobulin G.
        Microchim Acta. 2017; 184: 2023-2029
        • Li D.
        • Wei S.
        • Yang H.
        • et al.
        A sensitive immunochromatographic assay using colloidal gold-antibody probe for rapid detection of pharmaceutical indomethacin in water samples.
        Biosen Bioelectron. 2009; 24: 2277-2280
        • Tang Y.
        • Zhai Y.F.
        • Xiang J.
        • et al.
        Colloidal gold probe-based immunochromatographic assay for the rapid detection of lead ions in water samples.
        Environ Pollut. 2010; 158: 2074-2077
        • Baryeh K.
        • Takalkar S.
        • Lund M.
        • et al.
        Development of quantitative immunochromatographic assay for rapid and sensitive detection of carbohydrate antigen 19-9 (CA 19-9) in human plasma.
        J Pharm Biomed Anal. 2017; 146: 285-291
        • Gao X.
        • Xu H.
        • Baloda M.
        • et al.
        Visual detection of microRNA with lateral flow nucleic acid biosensor.
        Biosen Bioelectron. 2014; 54: 578-584
        • Zheng W.
        • Yao L.
        • Teng J.
        • et al.
        Lateral flow test for visual detection of multiple MicroRNAs.
        Sensors Actuat B Chem. 2018; 264: 320-326
        • Feng Q.M.
        • Liu Z.
        • Chen H.Y.
        • et al.
        Paper based electrochemiluminescence biosensor for cancer cell detection.
        Electrochem Commun. 2014; 49: 88-92
        • Corso C.D.
        • Stubbs D.D.
        • Lee S.H.
        • et al.
        Real-time detection of mesothelin in pancreatic cancer cell line supernatant using an acoustic wave immunosensor.
        Cancer Detect Prev. 2006; 30: 180-187