Advertisement

Nucleic acid-based theranostics in type 1 diabetes

  • Bennett Francis Dwan
    Affiliations
    Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan

    College of Natural Science, Michigan State University, East Lansing, Michigan
    Search for articles by this author
  • Anna Moore
    Affiliations
    Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan
    Search for articles by this author
  • Ping Wang
    Correspondence
    Reprint requests: Ping Wang, Precision Health Program, Department of Radiology, Michigan State University, 775 Woodlot Dr., Rm. 3.112, East Lansing, MI 48823.
    Affiliations
    Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan
    Search for articles by this author
Published:August 21, 2019DOI:https://doi.org/10.1016/j.trsl.2019.08.006
      Application of RNAi interference for type 1 diabetes (T1D) therapy bears tremendous potential. This review will discuss vehicles for oligonucleotide delivery, imaging modalities used for delivery monitoring, therapeutic targets, and different theranostic strategies that can be applied for T1D treatment.

      Abbreviations:

      B2M (beta2 microglobulin), BMT (bone marrow transplantation), CD4 and CD8 (cluster of differentiation 4 and 8), CT (computerized tomography), DAPI (4',6-diamidino-2-phenylindole stain), DNAzymes (deoxyribozymes), DTBZ (dihydrotetrabenazine), GLP (glucagon-like peptide), hBMSC (human bone marrow stromal cells), lncRNA (long non-coding ribonucleic acid), miRNA (micro ribonucleic acid), MN (magnetic nanoparticle), MPI (magnetic particle imaging), MRI (magnetic resonance imaging), mRNA (messenger ribonucleic acid), PBMC (peripheral blood mononuclear cells), PET (positron emission tomography), RNAi (ribonucleic acid interference), siRNA (small interfering ribonucleic acid), SPECT (single-photon emission computed tomography), SPIO (superparamagnetic iron oxide nanoparticles), T1D (type 1 diabetes), Th17 (T helper 17 cell), TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling stain)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Peloso A.
        • Citro A.
        • Zoro T.
        • et al.
        Regenerative medicine and diabetes: targeting the extracellular matrix beyond the stem cell approach and encapsulation technology.
        Front Endocrinol (Lausanne). 2018; 9: 445
        • Lebastchi J.
        • Herold K.C.
        Immunologic and metabolic biomarkers of beta-cell destruction in the diagnosis of type 1 diabetes.
        Cold Spring Harb Perspect Med. 2012; 2a007708
        • Atkinson M.A.
        • Eisenbarth G.S.
        • Michels A.W.
        Type 1 diabetes.
        Lancet. 2014; 383: 69-82
        • Bello N.A.
        • Pfeffer M.A.
        • Skali H.
        • et al.
        Retinopathy and clinical outcomes in patients with type 2 diabetes mellitus, chronic kidney disease, and anemia.
        BMJ Open Diabetes Res Care. 2014; 2e000011
        • Yan B.
        • Yao J.
        • Liu J.Y.
        • et al.
        lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA.
        Circ Res. 2015; 116: 1143-1156
        • Yin D.D.
        • Zhang E.B.
        • You L.H.
        • et al.
        Downregulation of lncRNA TUG1 affects apoptosis and insulin secretion in mouse pancreatic beta cells.
        Cell Physiol Biochem. 2015; 35: 1892-1904
        • You L.
        • Wang N.
        • Yin D.
        • et al.
        Downregulation of long noncoding RNA Meg3 affects insulin synthesis and secretion in mouse pancreatic beta cells.
        J Cell Physiol. 2016; 231: 852-862
        • Wang N.
        • Zhu Y.
        • Xie M.
        • et al.
        Long noncoding RNA Meg3 regulates Mafa expression in mouse beta cells by inactivating Rad21, Smc3 or Sin3alpha.
        Cell Physiol Biochem. 2018; 45: 2031-2043
        • Lam J.K.
        • Chow M.Y.
        • Zhang Y.
        • Leung S.W.
        siRNA versus miRNA as therapeutics for gene silencing.
        Mol Ther Nucleic Acids. 2015; 4: e252
        • Guay C.
        • Roggli E.
        • Nesca V.
        • Jacovetti C.
        • Regazzi R.
        Diabetes mellitus, a microRNA-related disease?.
        Transl Res. 2011; 157: 253-264
        • Zheng Y.
        • Wang Z.
        • Zhou Z.
        miRNAs: novel regulators of autoimmunity-mediated pancreatic beta-cell destruction in type 1 diabetes.
        Cell Mol Immunol. 2017; 14: 488-496
        • Roggli E.
        • Gattesco S.
        • Caille D.
        • et al.
        Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic NOD mice.
        Diabetes. 2012; 61: 1742-1751
        • Akerman L.
        • Casas R.
        • Ludvigsson J.
        • Tavira B.
        • Skoglund C.
        Serum miRNA levels are related to glucose homeostasis and islet autoantibodies in children with high risk for type 1 diabetes.
        PLoS One. 2018; 13e0191067
        • Snowhite I.V.
        • Allende G.
        • Sosenko J.
        • Pastori R.L.
        • Messinger Cayetano S.
        • Pugliese A.
        Association of serum microRNAs with islet autoimmunity, disease progression and metabolic impairment in relatives at risk of type 1 diabetes.
        Diabetologia. 2017; 60: 1409-1422
        • Seyhan A.A.
        • Nunez Lopez Y.O.
        • Xie H.
        • et al.
        Pancreas-enriched miRNAs are altered in the circulation of subjects with diabetes: a pilot cross-sectional study.
        Sci Rep. 2016; 6: 31479
        • Wang G.
        • Gu Y.
        • Xu N.
        • Zhang M.
        • Yang T.
        Decreased expression of miR-150, miR146a and miR424 in type 1 diabetic patients: association with ongoing islet autoimmunity.
        Biochem Biophys Res Commun. 2018; 498: 382-387
        • Dotta F.
        • Ventriglia G.
        • Snowhite I.V.
        • Pugliese A.
        MicroRNAs: markers of beta-cell stress and autoimmunity.
        Curr Opin Endocrinol Diabetes Obes. 2018; 25: 237-245
        • Kim D.
        • Rossi J.
        RNAi mechanisms and applications.
        Biotechniques. 2008; 44: 613-616
        • Rao D.D.
        • Wang Z.
        • Senzer N.
        • Nemunaitis J.
        RNA interference and personalized cancer therapy.
        Discov Med. 2013; 15: 101-110
        • Czech M.P.
        • Aouadi M.
        • Tesz G.J.
        RNAi-based therapeutic strategies for metabolic disease.
        Nat Rev Endocrinol. 2011; 7: 473-484
        • Jacque J.M.
        • Triques K.
        • Stevenson M.
        Modulation of HIV-1 replication by RNA interference.
        Nature. 2002; 418: 435-438
        • Setten R.L.
        • Rossi J.J.
        • Han S.P.
        The current state and future directions of RNAi-based therapeutics.
        Nat Rev Drug Discov. 2019; 18: 421-446
        • Bracho-Sanchez E.
        • Xia C.Q.
        • Clare-Salzler M.J.
        • Keselowsky B.G.
        Micro and nano material carriers for immunomodulation.
        Am J Transplant. 2016; 16: 3362-3370
        • Pridgen E.M.
        • Alexis F.
        • Kuo T.T.
        • et al.
        Transepithelial transport of Fc-targeted nanoparticles by the neonatal FC receptor for oral delivery.
        Sci Transl Med. 2013; 5 (213ra167)
        • Yildirimer L.
        • Thanh N.T.
        • Loizidou M.
        • Seifalian A.M.
        Toxicology and clinical potential of nanoparticles.
        Nano Today. 2011; 6: 585-607
        • Wang P.
        • Yigit M.V.
        • Ran C.
        • et al.
        A theranostic small interfering RNA nanoprobe protects pancreatic islet grafts from adoptively transferred immune rejection.
        Diabetes. 2012; 61: 3247-3254
        • Kumari P.
        • Ghosh B.
        • Biswas S.
        Nanocarriers for cancer-targeted drug delivery.
        J Drug Target. 2016; 24: 179-191
        • Jones C.F.
        • Campbell R.A.
        • Franks Z.
        • et al.
        Cationic PAMAM dendrimers disrupt key platelet functions.
        Mol Pharm. 2012; 9: 1599-1611
        • Thiagarajan G.
        • Greish K.
        • Ghandehari H.
        Charge affects the oral toxicity of poly(amidoamine) dendrimers.
        Eur J Pharm Biopharm. 2013; 84: 330-334
        • Madaan K.
        • Kumar S.
        • Poonia N.
        • Lather V.
        • Pandita D.
        Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues.
        J Pharm Bioallied Sci. 2014; 6: 139-150
        • Narayanaswamy R.
        • Torchilin V.P.
        Hydrogels and their applications in targeted drug delivery.
        Molecules. 2019; 24: E603
        • Jalalvandi E.
        • Cabral J.
        • Hanton L.R.
        • Moratti S.C.
        Cyclodextrin-polyhydrazine degradable gels for hydrophobic drug delivery.
        Mater Sci Eng C Mater Biol Appl. 2016; 69: 144-153
        • Yingchoncharoen P.
        • Kalinowski D.S.
        • Richardson D.R.
        Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come.
        Pharmacol Rev. 2016; 68: 701-787
        • Szebeni J.
        • Muggia F.
        • Gabizon A.
        • Barenholz Y.
        Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention.
        Adv Drug Deliv Rev. 2011; 63: 1020-1030
        • Singh P.
        • Pandit S.
        • Mokkapati V.
        • Garg A.
        • Ravikumar V.
        • Mijakovic I.
        Gold nanoparticles in diagnostics and therapeutics for human cancer.
        Int J Mol Sci. 2018; 19: 1979
        • Feng Z.V.
        • Gunsolus I.L.
        • Qiu T.A.
        • et al.
        Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Gram-positive bacteria.
        Chem Sci. 2015; 6: 5186-5196
        • Cho T.J.
        • MacCuspie R.I.
        • Gigault J.
        • Gorham J.M.
        • Elliott J.T.
        • Hackley V.A.
        Highly stable positively charged dendron-encapsulated gold nanoparticles.
        Langmuir. 2014; 30: 3883-3893
        • Kelkar S.S.
        • Reineke T.M.
        Theranostics: combining imaging and therapy.
        Bioconjug Chem. 2011; 22: 1879-1903
        • Janib S.M.
        • Moses A.S.
        • MacKay J.A.
        Imaging and drug delivery using theranostic nanoparticles.
        Adv Drug Deliv Rev. 2010; 62: 1052-1063
        • Jodal A.
        • Schibli R.
        • Behe M.
        Targets and probes for non-invasive imaging of beta-cells.
        Eur J Nucl Med Mol Imaging. 2017; 44: 712-727
        • Berger A.
        Magnetic resonance imaging.
        BMJ. 2002; 324: 35
        • Wang P.
        • Yoo B.
        • Yang J.
        • et al.
        GLP-1R-targeting magnetic nanoparticles for pancreatic islet imaging.
        Diabetes. 2014; 63: 1465-1474
        • Moore A.
        • Grimm J.
        • Han B.
        • Santamaria P.
        Tracking the recruitment of diabetogenic CD8+ T-cells to the pancreas in real time.
        Diabetes. 2004; 53: 1459-1466
        • Billotey C.
        • Aspord C.
        • Beuf O.
        • et al.
        T-cell homing to the pancreas in autoimmune mouse models of diabetes: in vivo MR imaging.
        Radiology. 2005; 236: 579-587
        • Gaglia J.L.
        • Harisinghani M.
        • Aganj I.
        • et al.
        Noninvasive mapping of pancreatic inflammation in recent-onset type-1 diabetes patients.
        Proc Natl Acad Sci U S A. 2015; 112: 2139-2144
        • Meyer A.
        • Stolz K.
        • Dreher W.
        • et al.
        Manganese-mediated MRI signals correlate with functional beta-cell mass during diabetes progression.
        Diabetes. 2015; 64: 2138-2147
        • Barnett B.P.
        • Ruiz-Cabello J.
        • Hota P.
        • et al.
        Fluorocapsules for improved function, immunoprotection, and visualization of cellular therapeutics with MR, US, and CT imaging.
        Radiology. 2011; 258: 182-191
        • Barnett B.P.
        • Ruiz-Cabello J.
        • Hota P.
        • et al.
        Use of perfluorocarbon nanoparticles for non-invasive multimodal cell tracking of human pancreatic islets.
        Contrast Media Mol Imaging. 2011; 6: 251-259
        • Medarova Z.
        • Vallabhajosyula P.
        • Tena A.
        • et al.
        In vivo imaging of autologous islet grafts in the liver and under the kidney capsule in non-human primates.
        Transplantation. 2009; 87: 1659-1666
        • Medarova Z.
        • Castillo G.
        • Dai G.
        • Bolotin E.
        • Bogdanov A.
        • Moore A.
        Noninvasive magnetic resonance imaging of microvascular changes in type 1 diabetes.
        Diabetes. 2007; 56: 2677-2682
        • Medarova Z.
        • Greiner D.L.
        • Ifediba M.
        • et al.
        Imaging the pancreatic vasculature in diabetes models.
        Diabetes Metab Res Rev. 2011; 27: 767-772
        • Burtea C.
        • Laurent S.
        • Crombez D.
        • et al.
        Development of a peptide-functionalized imaging nanoprobe for the targeting of (FXYD2)gammaa as a highly specific biomarker of pancreatic beta cells.
        Contrast Media Mol Imaging. 2015; 10: 398-412
        • Demine S.
        • Balhuizen A.
        • Debaille V.
        • et al.
        Imaging of human insulin secreting cells with Gd-DOTA-P88, a paramagnetic contrast agent targeting the beta cell biomarker FXYD2gammaa.
        Molecules. 2018; 23: E2100
        • Toso C.
        • Vallee J.P.
        • Morel P.
        • et al.
        Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling.
        Am J Transplant. 2008; 8: 701-706
        • Saudek F.
        • Jirak D.
        • Girman P.
        • et al.
        Magnetic resonance imaging of pancreatic islets transplanted into the liver in humans.
        Transplantation. 2010; 90: 1602-1606
        • Malosio M.L.
        • Esposito A.
        • Brigatti C.
        • et al.
        MR imaging monitoring of iron-labeled pancreatic islets in a small series of patients: islet fate in successful, unsuccessful, and autotransplantation.
        Cell Transplant. 2015; 24: 2285-2296
        • Kim S.J.
        • Doudet D.J.
        • Studenov A.R.
        • et al.
        Quantitative micro positron emission tomography (PET) imaging for the in vivo determination of pancreatic islet graft survival.
        Nat Med. 2006; 12: 1423-1428
        • Lu Y.
        • Dang H.
        • Middleton B.
        • et al.
        Noninvasive imaging of islet grafts using positron-emission tomography.
        Proc Natl Acad Sci U S A. 2006; 103: 11294-11299
        • Wu Z.
        • Todorov I.
        • Li L.
        • et al.
        In vivo imaging of transplanted islets with 64Cu-DO3A-VS-Cys40-Exendin-4 by targeting GLP-1 receptor.
        Bioconjug Chem. 2011; 22: 1587-1594
        • Normandin M.D.
        • Petersen K.F.
        • Ding Y.S.
        • et al.
        In vivo imaging of endogenous pancreatic beta-cell mass in healthy and type 1 diabetic subjects using 18F-fluoropropyl-dihydrotetrabenazine and PET.
        J Nucl Med. 2012; 53: 908-916
        • Cline G.W.
        • Naganawa M.
        • Chen L.
        • et al.
        Decreased VMAT2 in the pancreas of humans with type 2 diabetes mellitus measured in vivo by PET imaging.
        Diabetologia. 2018; 61: 2598-2607
        • Eriksson O.
        • Johnstrom P.
        • Cselenyi Z.
        • et al.
        In vivo visualization of beta-cells by targeting of GPR44.
        Diabetes. 2018; 67: 182-192
        • Oh C.S.
        • Kohanim S.
        • Kong F.L.
        • et al.
        Sulfonylurea receptor as a target for molecular imaging of pancreas beta cells with (99m)Tc-DTPA-glipizide.
        Ann Nucl Med. 2012; 26: 253-261
        • Brom M.
        • Joosten L.
        • Frielink C.
        • Boerman O.
        • Gotthardt M.
        (111)In-exendin uptake in the pancreas correlates with the beta-cell mass and not with the alpha-cell mass.
        Diabetes. 2015; 64: 1324-1328
        • Brom M.
        • Woliner-van der Weg W.
        • Joosten L.
        • et al.
        Non-invasive quantification of the beta cell mass by SPECT with (1)(1)(1)In-labelled exendin.
        Diabetologia. 2014; 57: 950-959
        • Soret M.
        • Bacharach S.L.
        • Buvat I.
        Partial-volume effect in PET tumor imaging.
        J Nucl Med. 2007; 48: 932-945
        • Cheng G.
        • Werner T.J.
        • Newberg A.
        • Alavi A.
        Failed PET application attempts in the past, can we avoid them in the future.
        Mol Imaging Biol. 2016; 18: 797-802
        • Alavi A.
        • Werner T.J.
        Futility of attempts to detect and quantify beta cells by PET imaging in the pancreas: why it is time to abandon the approach.
        Diabetologia. 2018; 61: 2512-2515
        • Gotthardt M.
        • Eizirik D.L.
        • Aanstoot H.J.
        • et al.
        Detection and quantification of beta cells by PET imaging: why clinical implementation has never been closer.
        Diabetologia. 2018; 61: 2516-2519
        • Catana C.
        • Guimaraes A.R.
        • Rosen B.R.
        PET and MR imaging: the odd couple or a match made in heaven?.
        J Nucl Med. 2013; 54: 815-824
        • Berg E.
        • Cherry S.R.
        Innovations in instrumentation for positron emission tomography.
        Semin Nucl Med. 2018; 48: 311-331
        • Harmsen S.
        • Teraphongphom N.
        • Tweedle M.
        • Basilion J.
        • Rosenthal E.
        Optical surgical navigation for precision tumor resections.
        Mol Imaging Biol. 2017; 19: 357-362
        • Hara M.
        • Yin D.
        • Dizon R.F.
        • Shen J.
        • Chong A.S.
        • Bindokas V.P.
        A mouse model for studying intrahepatic islet transplantation.
        Transplantation. 2004; 78: 615-618
        • Hara M.
        • Dizon R.F.
        • Glick B.S.
        • et al.
        Imaging pancreatic beta-cells in the intact pancreas.
        Am J Physiol Endocrinol Metab. 2006; 290: E1041-E1047
        • Reiner T.
        • Thurber G.
        • Gaglia J.
        • et al.
        Accurate measurement of pancreatic islet beta-cell mass using a second-generation fluorescent exendin-4 analog.
        Proc Natl Acad Sci USA. 2011; 108: 12815-12820
        • Virostko J.
        • Chen Z.
        • Fowler M.
        • Poffenberger G.
        • Powers A.C.
        • Jansen E.D.
        Factors influencing quantification of in vivo bioluminescence imaging: application to assessment of pancreatic islet transplants.
        Mol Imaging. 2004; 3: 333-342
        • Lu Y.
        • Dang H.
        • Middleton B.
        • et al.
        Bioluminescent monitoring of islet graft survival after transplantation.
        Mol Ther. 2004; 9: 428-435
        • Virostko J.
        • Radhika A.
        • Poffenberger G.
        • Dula A.N.
        • Moore D.J.
        • Powers A.C.
        Bioluminescence imaging reveals dynamics of beta cell loss in the non-obese diabetic (NOD) mouse model.
        PLoS One. 2013; 8: e57784
        • Gleich B.
        • Weizenecker J.
        Tomographic imaging using the nonlinear response of magnetic particles.
        Nature. 2005; 435: 1214-1217
        • Zheng B.
        • Vazin T.
        • Goodwill P.W.
        • et al.
        Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast.
        Sci Rep. 2015; 5: 14055
        • Goodwill P.W.
        • Saritas E.U.
        • Croft L.R.
        • et al.
        X-space MPI: magnetic nanoparticles for safe medical imaging.
        Adv Mater. 2012; 24: 3870-3877
        • Panagiotopoulos N.
        • Duschka R.L.
        • Ahlborg M.
        • et al.
        Magnetic particle imaging: current developments and future directions.
        Int J Nanomed. 2015; 10: 3097-3114
        • Saritas E.U.
        • Goodwill P.W.
        • Zhang G.Z.
        • Conolly S.M.
        Magnetostimulation limits in magnetic particle imaging.
        IEEE Trans Med Imaging. 2013; 32: 1600-1610
        • Wang P.
        • Goodwill P.
        • Pandit P.
        • et al.
        Magnetic particle imaging of islet transplantation in the liver and under the kidney capsule in mouse models.
        Quant Imaging Med Surg. 2018; 8: 114-122
        • Arifin D.R.
        • Long C.M.
        • Gilad A.A.
        • et al.
        Trimodal gadolinium-gold microcapsules containing pancreatic islet cells restore normoglycemia in diabetic mice and can be tracked by using US, CT, and positive-contrast MR imaging.
        Radiology. 2011; 260: 790-798
        • Feng J.
        • Xing W.
        • Xie L.
        Regulatory roles of MicroRNAs in diabetes.
        Int J Mol Sci. 2016; 17: E1729
        • Sebastiani G.
        • Po A.
        • Miele E.
        • et al.
        MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion.
        Acta Diabetol. 2015; 52: 523-530
        • Bolmeson C.
        • Esguerra J.L.
        • Salehi A.
        • Speidel D.
        • Eliasson L.
        • Cilio C.M.
        Differences in islet-enriched miRNAs in healthy and glucose intolerant human subjects.
        Biochem Biophys Res Commun. 2011; 404: 16-22
        • Eliasson L.
        The small RNA miR-375 - a pancreatic islet abundant miRNA with multiple roles in endocrine beta cell function.
        Mol Cell Endocrinol. 2017; 456: 95-101
        • Latreille M.
        • Herrmanns K.
        • Renwick N.
        • et al.
        miR-375 gene dosage in pancreatic beta-cells: implications for regulation of beta-cell mass and biomarker development.
        J Mol Med (Berl). 2015; 93: 1159-1169
        • Shang J.
        • Li J.
        • Keller M.P.
        • et al.
        Induction of miR-132 and miR-212 expression by glucagon-like peptide 1 (GLP-1) in Rodent and Human pancreatic beta-cells.
        Mol Endocrinol. 2015; 29: 1243-1253
        • Bijkerk R.
        • Esguerra J.L.S.
        • Ellenbroek J.H.
        • et al.
        In vivo silencing of MicroRNA-132 reduces blood glucose and improves insulin secretion.
        Nucleic Acid Ther. 2019; 29: 67-72
        • van de Bunt M.
        • Gaulton K.J.
        • Parts L.
        • et al.
        The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis.
        PLoS One. 2013; 8: e55272
        • Shen Z.
        • Jiang H.
        • Hsu H.T.
        • et al.
        MicroRNA-127 inhibits cell proliferation via targeting Kif3b in pancreatic beta cells.
        Aging (Albany NY). 2019; 11: 1342-1355
        • Huang X.
        • Liu F.
        • Zhu C.
        • et al.
        Suppression of KIF3B expression inhibits human hepatocellular carcinoma proliferation.
        Dig Dis Sci. 2014; 59: 795-806
        • Grieco F.A.
        • Sebastiani G.
        • Juan-Mateu J.
        • et al.
        MicroRNAs miR-23a-3p, miR-23b-3p, and miR-149-5p regulate the expression of proapoptotic BH3-only proteins DP5 and PUMA in human pancreatic beta-cells.
        Diabetes. 2017; 66: 100-112
        • Sabirzhanov B.
        • Zhao Z.
        • Stoica B.A.
        • et al.
        Downregulation of miR-23a and miR-27a following experimental traumatic brain injury induces neuronal cell death through activation of proapoptotic Bcl-2 proteins.
        J Neurosci. 2014; 34: 10055-10071
        • McCall M.
        • Shapiro A.
        Update on islet transplantation.
        Cold Spring Harb Perspect Med. 2012; 2a007823
        • Mirenda V.
        • Golshayan D.
        • Read J.
        • et al.
        Achieving permanent survival of islet xenografts by independent manipulation of direct and indirect T-cell responses.
        Diabetes. 2005; 54: 1048-1055
        • Yi S.
        • Feng X.
        • Hawthorne W.
        • Patel A.
        • Walters S.
        • O'Connell P.J.
        CD8+ T cells are capable of rejecting pancreatic islet xenografts.
        Transplantation. 2000; 70: 896-906
        • Wang P.
        • Yigit M.V.
        • Medarova Z.
        • et al.
        Combined small interfering RNA therapy and in vivo magnetic resonance imaging in islet transplantation.
        Diabetes. 2011; 60: 565-571
        • Emamaullee J.A.
        • Stanton L.
        • Schur C.
        • Shapiro A.M.
        Caspase inhibitor therapy enhances marginal mass islet graft survival and preserves long-term function in islet transplantation.
        Diabetes. 2007; 56: 1289-1298
        • Cheng G.
        • Zhu L.
        • Mahato R.I.
        Caspase-3 gene silencing for inhibiting apoptosis in insulinoma cells and human islets.
        Mol Pharm. 2008; 5: 1093-1102
        • Pomposelli T.
        • Wang P.
        • Ariyoshi Y.
        The protective effects of siRNA conjugated nanoparticles in pancreatic islet cells after transplant.
        Am J Transplant. 2019; 19
        • Silva D.G.
        • Petrovsky N.
        • Socha L.
        • Slattery R.
        • Gatenby P.
        • Charlton B.
        Mechanisms of accelerated immune-mediated diabetes resulting from islet beta cell expression of a Fas ligand transgene.
        J Immunol. 2003; 170: 4996-5002
        • Strasser A.
        • Jost P.J.
        • Nagata S.
        The many roles of FAS receptor signaling in the immune system.
        Immunity. 2009; 30: 180-192
        • Jeong J.H.
        • Kim S.H.
        • Lee M.
        • et al.
        Non-viral systemic delivery of Fas siRNA suppresses cyclophosphamide-induced diabetes in NOD mice.
        J Control Release. 2010; 143: 88-94
        • Dumortier O.
        • Hinault C.
        • Gautier N.
        Maternal protein restriction leads to pancreatic failure in offspring: role of misexpressed microRNA-375.
        Diabetes. 2014; 63: 3416-3427
        • Wen D.
        • Peng Y.
        • Liu D.
        • Weizmann Y.
        • Mahato R.I.
        Mesenchymal stem cell and derived exosome as small RNA carrier and Immunomodulator to improve islet transplantation.
        J Control Release. 2016; 238: 166-175
        • Ingulli E.
        Mechanism of cellular rejection in transplantation.
        Pediatr Nephrol. 2010; 25: 61-74
        • Heidt S.
        • Segundo D.S.
        • Chadha R.
        • Wood K.J.
        The impact of Th17 cells on transplant rejection and the induction of tolerance.
        Curr Opin Organ Transplant. 2010; 15: 456-461
        • Wang S.
        • Wan X.
        • Ruan Q.
        The MicroRNA-21 in autoimmune diseases.
        Int J Mol Sci. 2016; 17: E864
        • Wang H.
        • Xu W.
        • Shao Q.
        • Ding Q.
        miR-21 silencing ameliorates experimental autoimmune encephalomyelitis by promoting the differentiation of IL-10-producing B cells.
        Oncotarget. 2017; 8: 94069-94079
        • Wang H.
        • Fan H.
        • Tao J.
        • Shao Q.
        • Ding Q.
        MicroRNA-21 silencing prolongs islet allograft survival by inhibiting Th17 cells.
        Int Immunopharmacol. 2019; 66: 274-281
        • Thery C.
        • Ostrowski M.
        • Segura E.
        Membrane vesicles as conveyors of immune responses.
        Nat Rev Immunol. 2009; 9: 581-593
        • Guay C.
        • Regazzi R.
        Role of islet microRNAs in diabetes: which model for which question?.
        Diabetologia. 2015; 58: 456-463
        • Kosaka N.
        • Iguchi H.
        • Yoshioka Y.
        • Takeshita F.
        • Matsuki Y.
        • Ochiya T.
        Secretory mechanisms and intercellular transfer of microRNAs in living cells.
        J Biol Chem. 2010; 285: 17442-17452
        • Guay C.
        • Kruit J.K.
        • Rome S.
        • et al.
        Lymphocyte-derived exosomal MicroRNAs promote pancreatic beta cell death and may contribute to type 1 diabetes development.
        Cell Metab. 2019; 29 (348-61 e6)
        • Hasegawa Y.
        • Ogihara T.
        • Yamada T.
        • et al.
        Bone marrow (BM) transplantation promotes beta-cell regeneration after acute injury through BM cell mobilization.
        Endocrinology. 2007; 148: 2006-2015
        • Tsukita S.
        • Yamada T.
        • Takahashi K.
        • et al.
        MicroRNAs 106b and 222 improve hyperglycemia in a mouse model of insulin-deficient diabetes via pancreatic beta-cell proliferation.
        EBioMedicine. 2017; 15: 163-172
        • Kim Y.K.
        • Yu J.
        • Han T.S.
        • et al.
        Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer.
        Nucleic Acids Res. 2009; 37: 1672-1681
        • Kloosterman W.P.
        • Lagendijk A.K.
        • Ketting R.F.
        • Moulton J.D.
        • Plasterk R.H.
        Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development.
        PLoS Biol. 2007; 5: e203
        • Lahmy R.
        • Soleimani M.
        • Sanati M.H.
        • Behmanesh M.
        • Kouhkan F.
        • Mobarra N.
        MiRNA-375 promotes beta pancreatic differentiation in human induced pluripotent stem (hiPS) cells.
        Mol Biol Rep. 2014; 41: 2055-2066
        • Adams D.
        • Gonzalez-Duarte A.
        • O'Riordan W.D.
        • et al.
        Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis.
        N Engl J Med. 2018; 379: 11-21
        • Benson M.D.
        • Teague S.D.
        • Kovacs R.
        Rate of progression of transthyretin amyloidosis.
        Am J Cardiol. 2011; 108: 285-289
        • Ruberg F.L.
        • Maurer M.S.
        • Judge D.P.
        • et al.
        Prospective evaluation of the morbidity and mortality of wild-type and V122I mutant transthyretin amyloid cardiomyopathy: the Transthyretin Amyloidosis Cardiac Study (TRACS).
        Am Heart J. 2012; 164 (222-8 e1)
        • Boettcher M.
        • McManus M.T.
        Choosing the right tool for the job: RNAi, TALEN, or CRISPR.
        Mol Cell. 2015; 58: 575-585