Advertisement
Review Article| Volume 234, P58-73, August 2021

At the intersection of sleep deficiency and opioid use: mechanisms and therapeutic opportunities

  • Mark K. Greenwald
    Correspondence
    Reprint requests: Mark K. Greenwald, Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Tolan Park Medical Building, 3901 Chrysler Service Drive Suite 2A, Detroit, MI 48201
    Affiliations
    Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan
    Search for articles by this author
  • Tabitha E.H. Moses
    Affiliations
    Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan
    Search for articles by this author
  • Timothy A. Roehrs
    Affiliations
    Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan

    Sleep Disorders Center, Henry Ford Health System, Detroit, Michigan
    Search for articles by this author
Published:March 09, 2021DOI:https://doi.org/10.1016/j.trsl.2021.03.006
      Due to the ongoing opioid epidemic, innovative scientific perspectives and approaches are urgently needed to reduce the unprecedented personal and societal burdens of nonmedical and recreational opioid use. One promising opportunity is to focus on the relationship between sleep deficiency and opioid use. In this review, we examine empirical evidence: (1) at the interface of sleep deficiency and opioid use, including hypothesized bidirectional associations between sleep efficiency and opioid abstinence; (2) as to whether normalization of sleep deficiency might directly or indirectly improve opioid abstinence (and vice versa); and (3) regarding mechanisms that could link improvements in sleep to opioid abstinence. Based on available data, we identify candidate sleep-restorative therapeutic approaches that should be examined in rigorous clinical trials.

      Abbreviations:

      5HT (serotonin), CB (cannabinoid), CBD (cannabidiol), CBTi (cognitive behavioral treatment for insomnia), D2 (dopamine receptor 2 subtype), DSM-IV (Diagnostic and Statistical Manual version 4), eCB (endocannabinoid), EEG (electroencephalogram), FDA (Food and Drug Administration), GABA (gamma-amino-butyric acid), HEAL (Helping to End Addiction Long Term), IR (immediate release), HPA (hypothalamic-pituitary-adrenal), MBTi (mindfulness based treatment for insomnia), MOUD (medications for treating opioid use disorder), NIH (National Institutes of Health), NMDA (N-methyl-D-aspartate), NREM (non-rapid eye movement), OUD (opioid use disorder), OX (orexin), PSQI (Pittsburgh Sleep Quality Index), REM (rapid eye movement), rTMS (repetitive transcranial magnetic stimulation), SNS (sympathetic nervous system), SR (sustained release), SUDs (substance use disorders), tACS (transcranial alternating current stimulation), tDCS (transcranial direct current stimulation), THC (delta-9-tetrahydrocannabinol)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. American Society of Addiction Medicine. Opioid addiction 2016 facts & figures.; 2016. Available at: http://www.drugabuse.gov/drugs-abuse/opioids. Accessed July 2, 2017.

        • Center for Behavioral Health Statistics and Quality
        Results from the 2015 National Survey on Drug Use and Health: detailed tables.
        2016 (Rockville, MD)
      2. Council of Economic Advisers. The full cost of the opioid crisis: $2.5 trillion over four years.; 2019. Available at: https://www.whitehouse.gov/articles/full-cost-opioid-crisis-2-5-trillion-four-years/. Accessed December 12, 2020.

        • Saloner B
        • Karthikeyan S.
        Changes in substance abuse treatment use among individuals with opioid use disorders in the United States, 2004-2013.
        JAMA. 2015; 314: 1515https://doi.org/10.1001/jama.2015.10345
        • Center for Behavioral Health Statistics
        Results from the 2017 National Survey on Drug Use and Health: detailed tables.
        2018 (Rockville, MD) (Accessed January 4, 2019)
        • Wu L-T
        • Zhu H
        • Swartz MS.
        Treatment utilization among persons with opioid use disorder in the United States.
        Drug Alcohol Depend. 2016; 169: 117-127https://doi.org/10.1016/j.drugalcdep.2016.10.015
        • Hoffman KA
        • Ponce Terashima J
        • McCarty D
        Opioid use disorder and treatment: challenges and opportunities.
        BMC Health Serv Res. 2019; 19: 884https://doi.org/10.1186/s12913-019-4751-4
        • Knudsen HK
        • Abraham AJ
        • Roman PM.
        Adoption and implementation of medications in addiction treatment programs.
        J Addict Med. 2011; 5: 21-27https://doi.org/10.1097/ADM.0b013e3181d41ddb
        • Sharma A
        • Kelly SM
        • Mitchell SG
        • Gryczynski J
        • O'Grady KE
        • Schwartz RP
        Update on barriers to pharmacotherapy for opioid use disorders.
        Curr Psychiatry Rep. 2017; 19: 35https://doi.org/10.1007/s11920-017-0783-9
        • Hser Y-I
        • Evans E
        • Grella C
        • Ling W
        • Anglin D.
        Long-term course of opioid addiction.
        Harv Rev Psychiatry. 2015; 23: 76-89https://doi.org/10.1097/HRP.0000000000000052
        • Ronquest N
        • Willson T
        • Montejano L
        • Nadipelli V
        • Wollschlaeger B.
        Relationship between buprenorphine adherence and relapse, health care utilization and costs in privately and publicly insured patients with opioid use disorder.
        Subst Abuse Rehabil. 2018; 9: 59-78https://doi.org/10.2147/SAR.S150253
        • Sordo L
        • Barrio G
        • Bravo MJ
        • et al.
        Mortality risk during and after opioid substitution treatment: systematic review and meta-analysis of cohort studies.
        BMJ. 2017; 357: j1550https://doi.org/10.1136/bmj.j1550
        • Wiest K
        • Shaya G
        • Somaini L
        • Greenwald M.
        RBP-6000: a rationally designed prolonged-release buprenorphine formulation.
        Heroin Addict Relat Clin Probl. 2020; : 22
        • O'Connor AM
        • Cousins G
        • Durand L
        • Barry J
        • Boland F.
        Retention of patients in opioid substitution treatment: a systematic review.
        PLoS One. 2020; 15 (Latkin CA, ed)e0232086https://doi.org/10.1371/journal.pone.0232086
        • Schmidt EM
        • Gupta S
        • Bowe T
        • et al.
        Predictive validity of a quality measure for intensive substance use disorder treatment.
        Subst Abus. 2017; 38: 317-323https://doi.org/10.1080/08897077.2016.1212779
        • Morgan JR
        • Schackman BR
        • Leff JA
        • Linas BP
        • Walley AY.
        Injectable naltrexone, oral naltrexone, and buprenorphine utilization and discontinuation among individuals treated for opioid use disorder in a United States commercially insured population.
        J Subst Abuse Treat. 2018; 85: 90-96https://doi.org/10.1016/j.jsat.2017.07.001
      3. Food and Drug Administration. FDA takes new steps to encourage the development of novel medicines for the treatment of opioid use disorder | FDA.; 2018. Available at: https://www.fda.gov/news-events/press-announcements/fda-takes-new-steps-encourage-development-novel-medicines-treatment-opioid-use-disorder. Accessed December 12, 2020.

        • Carskadon M
        • Dement W.
        Normal human sleep: an overview.
        in: Kryger MH Roth T Dement WC Principles and practice of sleep medicine. 6th ed. Elsevier, Philadelphia, PA2017: 15-24
        • Vgontzas AN
        • Fernandez-Mendoza J
        • Liao D
        • Bixler EO.
        Insomnia with objective short sleep duration: the most biologically severe phenotype of the disorder.
        Sleep Med Rev. 2013; 17: 241-254https://doi.org/10.1016/j.smrv.2012.09.005
        • Hartwell EE
        • Pfeifer JG
        • McCauley JL
        • Moran-Santa Maria M
        • Back SE.
        Sleep disturbances and pain among individuals with prescription opioid dependence.
        Addict Behav. 2014; 39: 1537-1542https://doi.org/10.1016/j.addbeh.2014.05.025
        • Larson RA
        • Carter JR.
        Total sleep deprivation and pain perception during cold noxious stimuli in humans.
        Scand J Pain. 2016; 13: 12-16https://doi.org/10.1016/j.sjpain.2016.05.037
        • Roehrs T
        • Hyde M
        • Blaisdell B
        • Greenwald M
        • Roth T.
        Sleep loss and REM sleep loss are hyperalgesic.
        Sleep. 2006; 29: 145-151https://doi.org/10.1093/sleep/29.2.145
        • Roehrs TA
        • Harris E
        • Randall S
        • Roth T.
        Pain sensitivity and recovery from mild chronic sleep loss.
        Sleep. 2012; 35: 1667-1672https://doi.org/10.5665/sleep.2240
        • Sardi NF
        • Lazzarim MK
        • Guilhen VA
        • et al.
        Chronic sleep restriction increases pain sensitivity over time in a periaqueductal gray and nucleus accumbens dependent manner.
        Neuropharmacology. 2018; 139: 52-60https://doi.org/10.1016/j.neuropharm.2018.06.022
        • Beattie L
        • Kyle SD
        • Espie CA
        • Biello SM.
        Social interactions, emotion and sleep: a systematic review and research agenda.
        Sleep Med Rev. 2015; 24: 83-100https://doi.org/10.1016/j.smrv.2014.12.005
        • Fillo J
        • Alfano CA
        • Paulus DJ
        • et al.
        Emotion dysregulation explains relations between sleep disturbance and smoking quit-related cognition and behavior.
        Addict Behav. 2016; 57: 6-12https://doi.org/10.1016/j.addbeh.2016.01.013
        • Klumpp H
        • Hosseini B
        • Phan KL.
        Self-reported sleep quality modulates amygdala resting-state functional connectivity in anxiety and depression.
        Front Psychiatry. 2018; 9https://doi.org/10.3389/fpsyt.2018.00220
        • Chen J
        • Liang J
        • Lin X
        • et al.
        Sleep deprivation promotes habitual control over goal-directed control: behavioral and neuroimaging evidence.
        J Neurosci. 2017; 37: 11979-11992https://doi.org/10.1523/JNEUROSCI.1612-17.2017
        • Honn KA
        • Hinson JM
        • Whitney P
        • Van Dongen HPA.
        Cognitive flexibility: a distinct element of performance impairment due to sleep deprivation.
        Accid Anal Prev. 2019; 126: 191-197https://doi.org/10.1016/j.aap.2018.02.013
        • Massar SAA
        • Lim J
        • Sasmita K
        • Chee MWL.
        Sleep deprivation increases the costs of attentional effort: performance, preference and pupil size.
        Neuropsychologia. 2019; 123: 169-177https://doi.org/10.1016/j.neuropsychologia.2018.03.032
        • Mullette-Gillman OA
        • Kurnianingsih YA
        • Liu JCJ.
        Sleep deprivation alters choice strategy without altering uncertainty or loss aversion preferences.
        Front Neurosci. 2015; 9https://doi.org/10.3389/fnins.2015.00352
        • Stojanoski B
        • Benoit A
        • Van Den Berg N
        • et al.
        Sustained vigilance is negatively affected by mild and acute sleep loss reflected by reduced capacity for decision making, motor preparation, and execution.
        Sleep. 2019; 42https://doi.org/10.1093/sleep/zsy200
        • Trksak GH
        • Bracken BK
        • Jensen JE
        • et al.
        Effects of sleep deprivation on brain bioenergetics, sleep, and cognitive performance in cocaine-dependent individuals.
        Sci World J. 2013; 2013: 1-10https://doi.org/10.1155/2013/947879
        • Valentino RJ
        • Volkow ND.
        Drugs, sleep, and the addicted brain.
        Neuropsychopharmacology. 2020; 45: 3-5https://doi.org/10.1038/s41386-019-0465-x
        • Brower KJ.
        Assessment and treatment of insomnia in adult patients with alcohol use disorders.
        Alcohol. 2015; 49: 417-427https://doi.org/10.1016/j.alcohol.2014.12.003
        • Irwin M
        • Miller C
        • Gillin JC
        • Demodena A
        • Ehlers CL.
        Polysomnographic and spectral sleep EEG in primary alcoholics: an interaction between alcohol dependence and African-American ethnicity.
        Alcohol Clin Exp Res. 2000; 24: 1376-1384
        • Mason BJ
        • Quello S
        • Goodell V
        • Shadan F
        • Kyle M
        • Begovic A.
        Gabapentin treatment for alcohol dependence.
        JAMA Intern Med. 2014; 174: 70https://doi.org/10.1001/jamainternmed.2013.11950
        • Miller MB
        • Donahue ML
        • Carey KB
        • Scott-Sheldon LAJ.
        Insomnia treatment in the context of alcohol use disorder: a systematic review and meta-analysis.
        Drug Alcohol Depend. 2017; 181: 200-207https://doi.org/10.1016/j.drugalcdep.2017.09.029
        • Nair US
        • Haynes P
        • Collins BN.
        Baseline sleep quality is a significant predictor of quit-day smoking self-efficacy among low-income treatment-seeking smokers.
        J Health Psychol. 2019; 24: 1484-1493https://doi.org/10.1177/1359105317740619
        • Patterson F
        • Grandner MA
        • Malone SK
        • Rizzo A
        • Davey A
        • Edwards DG.
        Sleep as a target for optimized response to smoking cessation treatment.
        Nicotine Tob Res. 2019; 21: 139-148https://doi.org/10.1093/ntr/ntx236
        • Short NA
        • Mathes BM
        • Gibby B
        • Oglesby ME
        • Zvolensky MJ
        • Schmidt NB.
        Insomnia symptoms as a risk factor for cessation failure following smoking cessation treatment.
        Addict Res Theory. 2017; 25: 17-23https://doi.org/10.1080/16066359.2016.1190342
        • Babson KA
        • Boden MT
        • Harris AH
        • Stickle TR
        • MO Bonn-Miller
        Poor sleep quality as a risk factor for lapse following a cannabis quit attempt.
        J Subst Abuse Treat. 2013; 44: 438-443https://doi.org/10.1016/j.jsat.2012.08.224
        • Conroy DA
        • Arnedt JT.
        Sleep and substance use disorders: an update.
        Curr Psychiatry Rep. 2014; 16: 487https://doi.org/10.1007/s11920-014-0487-3
        • Haney M
        • Bedi G
        • Cooper ZD
        • et al.
        Predictors of marijuana relapse in the human laboratory: robust impact of tobacco cigarette smoking status.
        Biol Psychiatry. 2013; 73: 242-248https://doi.org/10.1016/j.biopsych.2012.07.028
        • Karimi-Haghighi S
        • Haghparast A.
        Cannabidiol inhibits priming-induced reinstatement of methamphetamine in REM sleep deprived rats.
        Prog Neuropsychopharmacol Biol Psychiatry. 2018; 82: 307-313https://doi.org/10.1016/j.pnpbp.2017.08.022
        • Berro LF
        • Frussa-Filho R
        • Tufik S
        • Andersen ML.
        Relationships between sleep and addiction: the role of drug-environment conditioning.
        Med Hypotheses. 2014; 82: 374-376https://doi.org/10.1016/j.mehy.2013.12.026
        • Boscarino J
        • Hoffman S
        • Han J.
        Opioid-use disorder among patients on long-term opioid therapy: impact of final DSM-5 diagnostic criteria on prevalence and correlates.
        Subst Abuse Rehabil. 2015; : 83https://doi.org/10.2147/SAR.S85667
        • Eacret D
        • Veasey SC
        • Blendy JA.
        Bidirectional relationship between opioids and disrupted sleep: putative mechanisms.
        Mol Pharmacol. 2020; 98: 445-453https://doi.org/10.1124/mol.119.119107
        • Groenewald CB
        • Law EF
        • Rabbitts JA
        • Palermo TM.
        Associations between adolescent sleep deficiency and prescription opioid misuse in adulthood.
        Sleep. 2020; https://doi.org/10.1093/sleep/zsaa201
        • Lydon-Staley DM
        • Cleveland HH
        • Huhn AS
        • et al.
        Daily sleep quality affects drug craving, partially through indirect associations with positive affect, in patients in treatment for nonmedical use of prescription drugs.
        Addict Behav. 2017; 65: 275-282https://doi.org/10.1016/j.addbeh.2016.08.026
        • Fathi HR
        • Yoonessi A
        • Khatibi A
        • Rezaeitalab F
        • Rezaei-Ardani A.
        Crosstalk between sleep disturbance and opioid use disorder: a narrative review.
        Addict Heal. 2020; 12: 140-158https://doi.org/10.22122/ahj.v12i2.249
        • Andersen ML
        • Araujo P
        • Frange C
        • Tufik S.
        Sleep disturbance and pain: a tale of two common problems.
        Chest. 2018; 154: 1249-1259https://doi.org/10.1016/j.chest.2018.07.019
        • Finan PH
        • Goodin BR
        • Smith MT.
        The association of sleep and pain: an update and a path forward.
        J Pain. 2013; 14: 1539-1552https://doi.org/10.1016/j.jpain.2013.08.007
        • Haack M
        • Simpson N
        • Sethna N
        • Kaur S
        • Mullington J.
        Sleep deficiency and chronic pain: potential underlying mechanisms and clinical implications.
        Neuropsychopharmacology. 2020; 45: 205-216https://doi.org/10.1038/s41386-019-0439-z
        • Lautenbacher S
        • Kundermann B
        • Krieg J.
        Sleep deprivation and pain perception.
        Sleep Med Rev. 2006; 10: 357-369https://doi.org/10.1016/j.smrv.2005.08.001
        • Stroemel-Scheder C
        • Kundermann B
        • Lautenbacher S.
        The effects of recovery sleep on pain perception: a systematic review.
        Neurosci Biobehav Rev. 2020; 113: 408-425https://doi.org/10.1016/j.neubiorev.2020.03.028
        • Irwin MR
        • Opp MR.
        Sleep health: reciprocal regulation of sleep and innate immunity.
        Neuropsychopharmacology. 2017; 42: 129-155https://doi.org/10.1038/npp.2016.148
        • Moreton JE
        • Roehrs T
        • Khazan N.
        Drug self-administration and sleep-awake activity in rats dependent on morphine, methadone, or l-alpha-acetylmethadol.
        Psychopharmacology (Berl). 1976; 47: 237-241
        • Kay DC
        • Eisenstein RB
        • Jasinski DR.
        Morphine effects on human REM state, waking state and NREM sleep.
        Psychopharmacologia. 1969; 14: 404-416https://doi.org/10.1007/BF00403581
        • Kay D
        • Pickworth W
        • Neider G.
        Morphine-like insomnia from heroin in nondependent human addicts.
        Br J Clin Pharmacol. 1981; 11: 159-169https://doi.org/10.1111/j.1365-2125.1981.tb01120.x
        • Pickworth WB
        • Neidert GL
        • Kay DC.
        Morphine like arousal by methadone during sleep.
        Clin Pharmacol Ther. 1981; 30: 796-804https://doi.org/10.1038/clpt.1981.240
        • Greenwald MK.
        Effects of opioid dependence and tobacco use on ventilatory response to progressive hypercapnia.
        Pharmacol Biochem Behav. 2004; 77: 39-47https://doi.org/10.1016/j.pbb.2003.10.003
        • Wang D
        • Teichtahl H.
        Opioids, sleep architecture and sleep-disordered breathing.
        Sleep Med Rev. 2007; 11: 35-46https://doi.org/10.1016/j.smrv.2006.03.006
        • Zinchuk AV
        • Thomas RJ.
        Central sleep apnea: diagnosis and management.
        in: Kryger MH Roth T Dement WC Principles and practice of sleep medicine. 2017: 1059-1075 (Philadelphia, PA)
        • Khazan N
        • Colasanti B.
        Protracted rebound in rapid movement sleep time and electroencephalogram voltage output in morphine-dependent rats upon withdrawal.
        J Pharmacol Exp Ther. 1972; 183: 23-30
        • Beswick T
        • Best D
        • Rees S
        • Bearn J
        • Gossop M
        • Stang J.
        Major disruptions of sleep during treatment of the opiate withdrawal syndrome: differences between methadone and lofexidine detoxification treatments.
        Addict Biol. 2003; 8: 49-57https://doi.org/10.1080/1355621031000069882
        • Gossop M
        • Bradley B.
        Insomnia among addicts during supervised withdrawal from opiates: a comparison of oral methadone and electrostimulation.
        Drug Alcohol Depend. 1984; 13: 191-198https://doi.org/10.1016/0376-8716(84)90058-9
        • Dijkstra BAG
        • De Jong CAJ
        • Krabbe PFM
        • van der Staak CPF.
        Prediction of abstinence in opioid-dependent patients.
        J Addict Med. 2008; 2: 194-201https://doi.org/10.1097/ADM.0b013e31818a6596
        • Angarita GA
        • Emadi N
        • Hodges S
        • Morgan PT.
        Sleep abnormalities associated with alcohol, cannabis, cocaine, and opiate use: a comprehensive review.
        Addict Sci Clin Pract. 2016; 11: 9https://doi.org/10.1186/s13722-016-0056-7
        • Farney RJ
        • McDonald AM
        • Boyle KM
        • et al.
        Sleep disordered breathing in patients receiving therapy with buprenorphine/naloxone.
        Eur Respir J. 2013; 42: 394-403https://doi.org/10.1183/09031936.00120012
        • Lukas SE
        • Dorsey CM
        • Mello NK
        • et al.
        Reversal of sleep disturbances in cocaine- and heroin-dependent men during chronic buprenorphine treatment.
        Exp Clin Psychopharmacol. 1996; 4: 413-420https://doi.org/10.1037/1064-1297.4.4.413
        • Pjrek E
        • Frey R
        • Naderi-Heiden A
        • et al.
        Actigraphic measurements in opioid detoxification with methadone or buprenorphine.
        J Clin Psychopharmacol. 2012; 32: 75-82https://doi.org/10.1097/JCP.0b013e31823f91d1
        • Davis MJ
        • Livingston M
        • Scharf SM.
        Reversal of central sleep apnea following discontinuation of opioids.
        J Clin Sleep Med. 2012; 08: 579-580https://doi.org/10.5664/jcsm.2164
        • Javaheri S
        • Patel S.
        Opioids cause central and complex sleep apnea in humans and reversal with discontinuation: a plea for detoxification.
        J Clin Sleep Med. 2017; 13: 829-833https://doi.org/10.5664/jcsm.6628
        • Carroll KM
        • Nich C
        • Frankforter TL
        • et al.
        Accounting for the uncounted: physical and affective distress in individuals dropping out of oral naltrexone treatment for opioid use disorder.
        Drug Alcohol Depend. 2018; 192: 264-270https://doi.org/10.1016/j.drugalcdep.2018.08.019
        • Ndegwa S
        • Pant S
        • Pohar S
        • Mierzwinski-Urban M.
        Injectable extended-release naltrexone to treat opioid use disorder.
        Canadian Agency for Drugs and Technologies in Health, 2016 (Accessed December 12, 2020)
        • Stella L
        • D'Ambra C
        • Mazzeo F
        • et al.
        Naltrexone plus benzodiazepine aids abstinence in opioid-dependent patients.
        Life Sci. 2005; 77: 2717-2722https://doi.org/10.1016/j.lfs.2005.05.036
        • Syed YY
        • Keating GM.
        Extended-release intramuscular naltrexone (VIVITROL®): a review of its use in the prevention of relapse to opioid dependence in detoxified patients.
        CNS Drugs. 2013; 27: 851-861https://doi.org/10.1007/s40263-013-0110-x
        • Staedt J
        • Wassmuth F
        • Stoppe G
        • et al.
        Effects of chronic treatment with methadone and naltrexone on sleep in addicts.
        Eur Arch Psychiatry Clin Neurosci. 1996; 246: 305-309https://doi.org/10.1007/BF02189023
        • Latif Z-H
        • Šaltyte Benth J
        • Solli KK
        • et al.
        Anxiety, depression, and insomnia among adults with opioid dependence treated with extended-release naltrexone vs buprenorphine-naloxone.
        JAMA Psychiatry. 2019; 76: 127https://doi.org/10.1001/jamapsychiatry.2018.3537
        • Roehrs T
        • Gumenyuk V
        • Drake C
        • Roth T.
        Physiological correlates of insomnia.
        Curr Top Behav Neurosci. 2014; 21: 277-290https://doi.org/10.1007/7854_2014_324
        • Vgontzas AN
        • Tsigos C
        • Bixler EO
        • et al.
        Chronic insomnia and activity of the stress system.
        J Psychosom Res. 1998; 45: 21-31https://doi.org/10.1016/S0022-3999(97)00302-4
        • Bonnet MH
        • Arand DL.
        24-hour metabolic rate in insomniacs and matched normal sleepers.
        Sleep. 1995; 18: 581-588https://doi.org/10.1093/sleep/18.7.581
        • Lushington K
        • Dawson D
        • Lack L.
        Core body temperature is elevated during constant wakefulness in elderly poor sleepers.
        Sleep. 2000; 23: 504-510
        • Laharnar N
        • Grote L
        • Zou D
        • et al.
        Overnight pulse wave analysis to assess autonomic changes during sleep in insomnia patients and healthy sleepers.
        PLoS One. 2020; 15 (Romigi A, ed.)e0232589https://doi.org/10.1371/journal.pone.0232589
        • Lichstein KL
        • Johnson RS.
        Pupillometric discrimination of insomniacs.
        Behav Res Ther. 1994; 32: 123-129https://doi.org/10.1016/0005-7967(94)90093-0
        • Roth T
        • Roehrs T
        • Pies R.
        Insomnia: pathophysiology and implications for treatment.
        Sleep Med Rev. 2007; 11: 71-79https://doi.org/10.1016/j.smrv.2006.06.002
        • Sanford LD
        • Suchecki D
        • Meerlo P.
        Stress, arousal, and sleep.
        Curr Top Behav Neurosci. 2015; 25: 379-410https://doi.org/10.1007/7854_2014_314
        • Teeters JB
        • Jones JL
        • Jarnecke AM
        • Back SE.
        Sleep moderates the relationship between stress and craving in individuals with opioid use disorder.
        Exp Clin Psychopharmacol. 2020; https://doi.org/10.1037/pha0000372
        • Arnedt JT
        • Conroy DA
        • Armitage R
        • Brower KJ.
        Cognitive-behavioral therapy for insomnia in alcohol dependent patients: a randomized controlled pilot trial.
        Behav Res Ther. 2011; 49: 227-233https://doi.org/10.1016/j.brat.2011.02.003
        • Brower KJ
        • Myra Kim H
        • Strobbe S
        • Karam-Hage MA
        • Consens F
        • Zucker RA
        A randomized double-blind pilot trial of gabapentin versus placebo to treat alcohol dependence and comorbid insomnia.
        Alcohol Clin Exp Res. 2008; 32: 1429-1438https://doi.org/10.1111/j.1530-0277.2008.00706.x
        • Kolla BP
        • Schneekloth TD
        • Biernacka JM
        • et al.
        Trazodone and alcohol relapse: a retrospective study following residential treatment.
        Am J Addict. 2011; 20: 525-529https://doi.org/10.1111/j.1521-0391.2011.00172.x
        • Afshar M
        • Knapp CM
        • Sarid-Segal O
        • et al.
        The efficacy of mirtazapine in the treatment of cocaine dependence with comorbid depression.
        Am J Drug Alcohol Abuse. 2012; 38: 181-186https://doi.org/10.3109/00952990.2011.644002
        • Gómez Pérez LJ
        • Cardullo S
        • Cellini N
        • et al.
        Sleep quality improves during treatment with repetitive transcranial magnetic stimulation (rTMS) in patients with cocaine use disorder: a retrospective observational study.
        BMC Psychiatry. 2020; 20: 153https://doi.org/10.1186/s12888-020-02568-2
        • Morgan PT
        • Angarita GA
        • Canavan S
        • et al.
        Modafinil and sleep architecture in an inpatient–outpatient treatment study of cocaine dependence.
        Drug Alcohol Depend. 2016; 160: 49-56https://doi.org/10.1016/j.drugalcdep.2015.12.004
        • Suchting R
        • Yoon JH
        • Miguel GGS
        • et al.
        Preliminary examination of the orexin system on relapse-related factors in cocaine use disorder.
        Brain Res. 2020; 1731146359https://doi.org/10.1016/j.brainres.2019.146359
        • Winhusen TM
        • Theobald J
        • Lewis DF.
        Substance use outcomes in cocaine-dependent tobacco smokers: a mediation analysis exploring the role of sleep disturbance, craving, anxiety, and depression.
        J Subst Abuse Treat. 2019; 96: 53-57https://doi.org/10.1016/j.jsat.2018.10.011
        • Haney M
        • Hart CL
        • Vosburg SK
        • et al.
        Effects of baclofen and mirtazapine on a laboratory model of marijuana withdrawal and relapse.
        Psychopharmacology (Berl). 2010; 211: 233-244https://doi.org/10.1007/s00213-010-1888-6
        • Haney M
        • Cooper ZD
        • Bedi G
        • Vosburg SK
        • Comer SD
        • Foltin RW.
        Nabilone decreases marijuana withdrawal and a laboratory measure of marijuana relapse.
        Neuropsychopharmacology. 2013; 38: 1557-1565https://doi.org/10.1038/npp.2013.54
        • Soreca I
        • Conklin CA
        • Vella EJ
        • et al.
        Can exercise alleviate sleep disturbances during acute nicotine withdrawal in cigarette smokers?.
        Exp Clin Psychopharmacol. 2020; https://doi.org/10.1037/pha0000390
        • Chakravorty S
        • Vandrey RG
        • He S
        • Stein MD.
        Sleep management among patients with substance use disorders.
        Med Clin North Am. 2018; 102: 733-743https://doi.org/10.1016/j.mcna.2018.02.012
        • Trauer JM
        • Qian MY
        • Doyle JS
        • Rajaratnam SMW
        • Cunnington D.
        Cognitive behavioral therapy for chronic insomnia.
        Ann Intern Med. 2015; 163: 191https://doi.org/10.7326/M14-2841
        • van Straten A
        • van der Zweerde T
        • Kleiboer A
        • Cuijpers P
        • Morin CM
        • Lancee J.
        Cognitive and behavioral therapies in the treatment of insomnia: a meta-analysis.
        Sleep Med Rev. 2018; 38: 3-16https://doi.org/10.1016/j.smrv.2017.02.001
        • Robabeh S
        • Jafar MM
        • Sharareh H
        • Maryam HR
        • Masoumeh E.
        The effect of cognitive behavior therapy in insomnia due to methadone maintenance therapy: a randomized clinical trial.
        Iran J Med Sci. 2015; 40: 396-403
        • Buysse DJ
        • Reynolds CF
        • Monk TH
        • Berman SR
        • Kupfer DJ.
        The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research.
        Psychiatry Res. 1989; 28: 193-213https://doi.org/10.1016/0165-1781(89)90047-4
        • Martires J
        • Zeidler M.
        The value of mindfulness meditation in the treatment of insomnia.
        Curr Opin Pulm Med. 2015; 21: 547-552https://doi.org/10.1097/MCP.0000000000000207
        • Lander L
        • Downs KC
        • Andrew M
        • Rader G
        • Dohar S
        • Waibogha K.
        Yoga as an adjunctive intervention to medication-assisted treatment with buprenorphine+naloxone.
        J Addict Res Ther. 2017; 08https://doi.org/10.4172/2155-6105.1000354
        • Bonnet MH
        • Arand DL.
        Hyperarousal and insomnia: State of the science.
        Sleep Med Rev. 2010; 14: 9-15https://doi.org/10.1016/j.smrv.2009.05.002
        • Huang Z
        • Zhan S
        • Li N
        • Ding Y
        • Wang Y.
        Abnormal recovery function of somatosensory evoked potentials in patients with primary insomnia.
        Psychiatry Res. 2012; 198: 463-467https://doi.org/10.1016/j.psychres.2011.11.024
        • Riemann D
        • Spiegelhalder K
        • Feige B
        • et al.
        The hyperarousal model of insomnia: a review of the concept and its evidence.
        Sleep Med Rev. 2010; 14: 19-31https://doi.org/10.1016/j.smrv.2009.04.002
        • van der Werf YD
        • Altena E
        • van Dijk KD
        • et al.
        Is disturbed intracortical excitability a stable trait of chronic insomnia? A study using transcranial magnetic stimulation before and after multimodal sleep therapy.
        Biol Psychiatry. 2010; 68: 950-955https://doi.org/10.1016/j.biopsych.2010.06.028
        • Babiloni AH
        • Bellemare A
        • Beetz G
        • et al.
        The effects of non-invasive brain stimulation on sleep disturbances among different neurological and neuropsychiatric conditions: a systematic review.
        Sleep Med Rev. 2021; 55101381https://doi.org/10.1016/j.smrv.2020.101381
        • Nardone R
        • Sebastianelli L
        • Versace V
        • et al.
        Effects of repetitive transcranial magnetic stimulation in subjects with sleep disorders.
        Sleep Med. 2020; 71: 113-121https://doi.org/10.1016/j.sleep.2020.01.028
        • Sun N
        • He Y
        • Wang Z
        • Zou W
        • Liu X.
        The effect of repetitive transcranial magnetic stimulation for insomnia: a systematic review and meta-analysis.
        Sleep Med. 2020; https://doi.org/10.1016/j.sleep.2020.05.020
        • Boonstra TW
        • Stins JF
        • Daffertshofer A
        • Beek PJ.
        Effects of sleep deprivation on neural functioning: an integrative review.
        Cell Mol Life Sci. 2007; 64: 934-946https://doi.org/10.1007/s00018-007-6457-8
        • Longordo F
        • Kopp C
        • Lüthi A.
        Consequences of sleep deprivation on neurotransmitter receptor expression and function.
        Eur J Neurosci. 2009; 29: 1810-1819https://doi.org/10.1111/j.1460-9568.2009.06719.x
        • Bertisch SM
        • Herzig SJ
        • Winkelman JW
        • Buettner C.
        National use of prescription medications for insomnia: NHANES 1999-2010.
        Sleep. 2014; 37: 343-349https://doi.org/10.5665/sleep.3410
        • Everitt H
        • Baldwin DS
        • Stuart B
        • et al.
        Antidepressants for insomnia in adults.
        Cochrane Database Syst Rev. 2018; 5CD010753https://doi.org/10.1002/14651858.CD010753.pub2
        • Jaffer KY
        • Chang T
        • Vanle B
        • et al.
        Trazodone for insomnia: a systematic review.
        Innov Clin Neurosci. 2017; 14 (doi:29552421): 24-34
        • Laudon M
        • Frydman-Marom A.
        Therapeutic effects of melatonin receptor agonists on sleep and comorbid disorders.
        Int J Mol Sci. 2014; 15: 15924-15950https://doi.org/10.3390/ijms150915924
        • Liu Y
        • Xu X
        • Dong M
        • Jia S
        • Wei Y.
        Treatment of insomnia with tricyclic antidepressants: a meta-analysis of polysomnographic randomized controlled trials.
        Sleep Med. 2017; 34: 126-133https://doi.org/10.1016/j.sleep.2017.03.007
        • McCall C
        • McCall WV.
        What is the role of sedating antidepressants, antipsychotics, and anticonvulsants in the management of insomnia?.
        Curr Psychiatry Rep. 2012; 14: 494-502https://doi.org/10.1007/s11920-012-0302-y
        • Roehrs T
        • Roth T.
        Insomnia pharmacotherapy.
        Neurotherapeutics. 2012; 9: 728-738https://doi.org/10.1007/s13311-012-0148-3
        • Stein MD
        • Kanabar M
        • Anderson BJ
        • Lembke A
        • Bailey GL.
        Reasons for benzodiazepine use among persons seeking opioid detoxification.
        J Subst Abuse Treat. 2016; 68: 57-61https://doi.org/10.1016/j.jsat.2016.06.008
      4. Food and Drug Administration. FDA drug safety communication: FDA warns about serious risks and death when combining opioid pain or cough medicines with benzodiazepines; requires its strongest warning | FDA.; 2016. Available at: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-warns-about-serious-risks-and-death-when-combining-opioid-pain-or. Accessed December 12, 2020.

        • Peckham AM
        • Evoy KE
        • Covvey JR
        • Ochs L
        • Fairman KA
        • Sclar DA.
        Predictors of gabapentin overuse with or without concomitant opioids in a commercially insured U.S. population.
        Pharmacother J Hum Pharmacol Drug Ther. 2018; 38: 436-443https://doi.org/10.1002/phar.2096
        • Gish EC
        • Miller JL
        • Honey BL
        • Johnson PN.
        Lofexidine, an α2-Receptor agonist for opioid detoxification.
        Ann Pharmacother. 2010; 44: 343-351https://doi.org/10.1345/aph.1M347
        • Pinkofsky HB
        • Hahn AM
        • Campbell FA
        • Rueda J
        • Daley DC
        • Douaihy AB.
        Reduction of opioid-withdrawal symptoms with quetiapine.
        J Clin Psychiatry. 2005; 66: 1285-1288https://doi.org/10.4088/JCP.v66n1011
        • Peles E
        • Hetzroni T
        • Bar-Hamburger R
        • Adelson M
        • Schreiber S.
        Melatonin for perceived sleep disturbances associated with benzodiazepine withdrawal among patients in methadone maintenance treatment: a double-blind randomized clinical trial.
        Addiction. 2007; 102: 1947-1953https://doi.org/10.1111/j.1360-0443.2007.02007.x
        • Kabuto M
        • Namura I
        • Saitoh Y.
        Nocturnal enhancement of plasma melatonin could be suppressed by benzodiazepines in humans.
        Endocrinol Jpn. 1986; 33: 405-414https://doi.org/10.1507/endocrj1954.33.405
        • Ghaderi A
        • Banafshe HR
        • Mirhosseini N
        • et al.
        The effects of melatonin supplementation on mental health, metabolic and genetic profiles in patients under methadone maintenance treatment.
        Addict Biol. 2019; 24: 754-764https://doi.org/10.1111/adb.12650
        • Valdés-Tovar M
        • Estrada-Reyes R
        • Solís-Chagoyán H
        • et al.
        Circadian modulation of neuroplasticity by melatonin: a target in the treatment of depression.
        Br J Pharmacol. 2018; 175: 3200-3208https://doi.org/10.1111/bph.14197
        • Javdan NS
        • Ghoreishi FS
        • Sehat M
        • Ghaderi A
        • Banafshe HR.
        Mental health and cognitive function responses to quetiapine in patients with methamphetamine abuse under methadone maintenance treatment.
        J Affect Disord. 2019; 251: 235-241https://doi.org/10.1016/j.jad.2019.03.078
        • Stein MD
        • Kurth ME
        • Sharkey KM
        • Anderson BJ
        • Corso RP
        • Millman RP.
        Trazodone for sleep disturbance during methadone maintenance: a double-blind, placebo-controlled trial.
        Drug Alcohol Depend. 2012; 120: 65-73https://doi.org/10.1016/j.drugalcdep.2011.06.026
        • Stein MD
        • Kurth ME
        • Anderson BJ
        • Blevins CE.
        A pilot crossover trial of sleep medications for sleep-disturbed methadone maintenance patients.
        J Addict Med. 2020; 14: 126-131https://doi.org/10.1097/ADM.0000000000000531
        • Kay DC.
        Human sleep during chronic morphine intoxication.
        Psychopharmacologia. 1975; 44: 117-124https://doi.org/10.1007/BF00420997
        • Wang D
        • Teichtahl H
        • Drummer O
        • et al.
        Central sleep apnea in stable methadone maintenance treatment patients.
        Chest. 2005; 128: 1348-1356https://doi.org/10.1378/chest.128.3.1348
        • Hallinan R
        • Elsayed M
        • Espinoza D
        • et al.
        Insomnia and excessive daytime sleepiness in women and men receiving methadone and buprenorphine maintenance treatment.
        Subst Use Misuse. 2019; 54: 1589-1598https://doi.org/10.1080/10826084.2018.1552298
        • Tripathi R
        • Dhawan A
        • Rao R
        • Mishra AK
        • Jain R
        • Sinha S.
        Assessment of subjective sleep problems in men with opioid dependence maintained on buprenorphine.
        J Addict Med. 2020; 14: 132-138https://doi.org/10.1097/ADM.0000000000000539
        • Dunn KE
        • Finan PH
        • Andrew Tompkins D
        • Strain EC
        Frequency and correlates of sleep disturbance in methadone and buprenorphine-maintained patients.
        Addict Behav. 2018; 76: 8-14https://doi.org/10.1016/j.addbeh.2017.07.016
        • Nordmann S
        • Lions C
        • Vilotitch A
        • et al.
        A prospective, longitudinal study of sleep disturbance and comorbidity in opiate dependence (the ANRS Methaville study).
        Psychopharmacology (Berl). 2016; 233: 1203-1213https://doi.org/10.1007/s00213-016-4202-4
        • Zheng W
        • Wakim R
        • Geary R
        • et al.
        Self-reported sleep Improvement in buprenorphine MAT (Medication Assisted Treatment) population.
        Austin J Drug Abus Addict. 2016; 3: 1009
        • Bertz JW
        • Epstein DH
        • Reamer D
        • et al.
        Sleep reductions associated with illicit opioid use and clinic-hour changes during opioid agonist treatment for opioid dependence: measurement by electronic diary and actigraphy.
        J Subst Abuse Treat. 2019; 106: 43-57https://doi.org/10.1016/j.jsat.2019.08.011
        • Sharkey KM
        • Kurth ME
        • Anderson BJ
        • Corso RP
        • Millman RP
        • Stein MD.
        Assessing sleep in opioid dependence: a comparison of subjective ratings, sleep diaries, and home polysomnography in methadone maintenance patients.
        Drug Alcohol Depend. 2011; 113: 245-248https://doi.org/10.1016/j.drugalcdep.2010.08.007
        • Atkin T
        • Comai S
        • Gobbi G.
        Drugs for insomnia beyond benzodiazepines: pharmacology, clinical applications, and discovery.
        Pharmacol Rev. 2018; 70 (Barker EL, ed): 197-245https://doi.org/10.1124/pr.117.014381
        • Moses TEH
        • Lundahl LH
        • Greenwald MK.
        Factors associated with sedative use and misuse among heroin users.
        Drug Alcohol Depend. 2018; 185: 10-16https://doi.org/10.1016/j.drugalcdep.2017.11.035
        • McAnally H
        • Bonnet U
        • Kaye AD.
        Gabapentinoid benefit and risk stratification: mechanisms over myth.
        Pain Ther. 2020; 9: 441-452https://doi.org/10.1007/s40122-020-00189-x
        • Meerlo P
        • Sgoifo A
        • Suchecki D.
        Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity.
        Sleep Med Rev. 2008; 12: 197-210https://doi.org/10.1016/j.smrv.2007.07.007
        • Srinivasan V
        • Pandi-Perumal SR
        • Trahkt I
        • et al.
        Melatonin and melatonergic drugs on sleep: possible mechanisms of action.
        Int J Neurosci. 2009; 119: 821-846https://doi.org/10.1080/00207450802328607
        • Babiloni AH
        • De Koninck BP
        • Beetz G
        • De Beaumont L
        • Martel MO
        • Lavigne GJ.
        Sleep and pain: recent insights, mechanisms, and future directions in the investigation of this relationship.
        J Neural Transm. 2020; 127: 647-660https://doi.org/10.1007/s00702-019-02067-z
        • Kaur T
        • Shyu B-C.
        Melatonin: a new-generation therapy for reducing chronic pain and improving sleep disorder-related pain.
        Adv Exp Med Biol. 2018; 1099: 229-251https://doi.org/10.1007/978-981-13-1756-9_19
        • Kesner AJ
        • Lovinger DM.
        Cannabinoids, endocannabinoids and sleep.
        Front Mol Neurosci. 2020; 13https://doi.org/10.3389/fnmol.2020.00125
        • Laprairie RB
        • Bagher AM
        • Kelly MEM
        • Denovan-Wright EM.
        Cannabidiol is a negative allosteric modulator of the cannabinoid CB 1 receptor.
        Br J Pharmacol. 2015; 172: 4790-4805https://doi.org/10.1111/bph.13250
        • Straiker A
        • Dvorakova M
        • Zimmowitch A
        • Mackie K.
        Cannabidiol inhibits endocannabinoid signaling in autaptic hippocampal neurons.
        Mol Pharmacol. 2018; 94: 743-748https://doi.org/10.1124/mol.118.111864
        • Bisogno T
        • Hanuš L
        • De Petrocellis L
        • et al.
        Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide.
        Br J Pharmacol. 2001; 134: 845-852https://doi.org/10.1038/sj.bjp.0704327
        • Mijangos-Moreno S
        • Poot-Aké A
        • Arankowsky-Sandoval G
        • Murillo-Rodríguez E.
        Intrahypothalamic injection of cannabidiol increases the extracellular levels of adenosine in nucleus accumbens in rats.
        Neurosci Res. 2014; 84: 60-63https://doi.org/10.1016/j.neures.2014.04.006
        • Russo EB
        • Burnett A
        • Hall B
        • Parker KK.
        Agonistic properties of cannabidiol at 5-HT1a receptors.
        Neurochem Res. 2005; 30: 1037-1043https://doi.org/10.1007/s11064-005-6978-1
        • Brown J
        • Winterstein A.
        Potential adverse drug events and drug–drug interactions with medical and consumer cannabidiol (CBD) Use.
        J Clin Med. 2019; 8: 989https://doi.org/10.3390/jcm8070989
        • Zhornitsky S
        • Potvin S.
        Cannabidiol in humans—the quest for therapeutic targets.
        Pharmaceuticals. 2012; 5: 529-552https://doi.org/10.3390/ph5050529
        • Campos AC
        • Moreira FA
        • Gomes FV
        • Del Bel EA
        • Guimarães FS.
        Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders.
        Philos Trans R Soc B Biol Sci. 2012; 367: 3364-3378https://doi.org/10.1098/rstb.2011.0389
        • Izzo AA
        • Borrelli F
        • Capasso R
        • Di Marzo V
        • Mechoulam R.
        Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb.
        Trends Pharmacol Sci. 2009; 30: 515-527https://doi.org/10.1016/j.tips.2009.07.006
        • Mechoulam R
        • Peters M
        • Murillo-Rodriguez E
        • Hanuš LO.
        Cannabidiol—recent advances.
        Chem Biodivers. 2007; 4: 1678-1692https://doi.org/10.1002/cbdv.200790147
        • Babson KA
        • Sottile J
        • Morabito D.
        Cannabis, cannabinoids, and sleep: a review of the literature.
        Curr Psychiatry Rep. 2017; 19: 23https://doi.org/10.1007/s11920-017-0775-9
        • Kuhathasan N
        • Dufort A
        • MacKillop J
        • Gottschalk R
        • Minuzzi L
        • Frey BN.
        The use of cannabinoids for sleep: a critical review on clinical trials.
        Exp Clin Psychopharmacol. 2019; 27: 383-401https://doi.org/10.1037/pha0000285
        • Suraev AS
        • Marshall NS
        • Vandrey R
        • et al.
        Cannabinoid therapies in the management of sleep disorders: a systematic review of preclinical and clinical studies.
        Sleep Med Rev. 2020; 53101339https://doi.org/10.1016/j.smrv.2020.101339
        • Vorspan F
        • Guillem E
        • Bloch V
        • et al.
        Cannabis withdrawal syndrome in patients with cannabis dependence only, and in patients with cannabis and opioid dependence [Article in French].
        Encephale. 2011; 37: 266-272https://doi.org/10.1016/j.encep.2010.12.007
        • Bisaga A
        • Sullivan MA
        • Glass A
        • et al.
        The effects of dronabinol during detoxification and the initiation of treatment with extended release naltrexone.
        Drug Alcohol Depend. 2015; 154: 38-45https://doi.org/10.1016/j.drugalcdep.2015.05.013
        • de Lecea L
        • Kilduff TS
        • Peyron C
        • et al.
        The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity.
        Proc Natl Acad Sci. 1998; 95: 322-327https://doi.org/10.1073/pnas.95.1.322
        • Sakurai T
        • Amemiya A
        • Ishii M
        • et al.
        Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior.
        Cell. 1998; 92: 573-585https://doi.org/10.1016/S0092-8674(00)80949-6
        • Tyree SM
        • Borniger JC
        • de Lecea L.
        Hypocretin as a hub for arousal and motivation.
        Front Neurol. 2018; 9https://doi.org/10.3389/fneur.2018.00413
        • Dugovic C
        • Shelton JE
        • Aluisio LE
        • et al.
        Blockade of orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat.
        J Pharmacol Exp Ther. 2009; 330: 142-151https://doi.org/10.1124/jpet.109.152009
        • Dugovic C
        • Shelton JE
        • Yun S
        • Bonaventure P
        • Shireman BT
        • Lovenberg TW.
        Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism.
        Front Neurosci. 2014; 8https://doi.org/10.3389/fnins.2014.00028
        • Mang GM
        • Dürst T
        • Bürki H
        • et al.
        The dual orexin receptor antagonist almorexant induces sleep and decreases orexin-induced locomotion by blocking orexin 2 receptors.
        Sleep. 2012; 35: 1625-1635https://doi.org/10.5665/sleep.2232
        • Morairty SR
        • Revel FG
        • Malherbe P
        • et al.
        Dual hypocretin receptor antagonism is more effective for sleep promotion than antagonism of either receptor alone.
        PLoS One. 2012; 7 (Seifert R, ed): e39131https://doi.org/10.1371/journal.pone.0039131
        • Cao M
        • Chow M.
        The hypocretin/orexin system in sleep disorders: preclinical insights and clinical progress.
        Nat Sci Sleep. 2016; : 81https://doi.org/10.2147/NSS.S76711
        • Herring WJ
        • Snyder E
        • Budd K
        • et al.
        Orexin receptor antagonism for treatment of insomnia: a randomized clinical trial of suvorexant.
        Neurology. 2012; 79: 2265-2274https://doi.org/10.1212/WNL.0b013e31827688ee
        • Citrome L.
        Suvorexant for insomnia: a systematic review of the efficacy and safety profile for this newly approved hypnotic—what is the number needed to treat, number needed to harm and likelihood to be helped or harmed?.
        Int J Clin Pract. 2014; 68: 1429-1441https://doi.org/10.1111/ijcp.12568
        • Herring WJ
        • Roth T
        • Krystal AD
        • Michelson D.
        Orexin receptor antagonists for the treatment of insomnia and potential treatment of other neuropsychiatric indications.
        J Sleep Res. 2019; 28https://doi.org/10.1111/jsr.12782
        • De Boer P
        • Drevets WC
        • Rofael H
        • et al.
        A randomized phase 2 study to evaluate the orexin-2 receptor antagonist seltorexant in individuals with insomnia without psychiatric comorbidity.
        J Psychopharmacol. 2018; 32: 668-677https://doi.org/10.1177/0269881118773745
        • Hoyer D
        • Jacobson LH.
        Orexin in sleep, addiction and more: Is the perfect insomnia drug at hand?.
        Neuropeptides. 2013; 47: 477-488https://doi.org/10.1016/j.npep.2013.10.009
        • Khoo SY-S
        • Brown RM.
        Orexin/hypocretin based pharmacotherapies for the treatment of addiction: DORA or SORA?.
        CNS Drugs. 2014; 28: 713-730https://doi.org/10.1007/s40263-014-0179-x
        • Kuriyama A
        • Tabata H.
        Suvorexant for the treatment of primary insomnia: a systematic review and meta-analysis.
        Sleep Med Rev. 2017; 35: 1-7https://doi.org/10.1016/j.smrv.2016.09.004
        • Yang LPH.
        Suvorexant: first global approval.
        Drugs. 2014; 74: 1817-1822https://doi.org/10.1007/s40265-014-0294-5
        • Greenwald MK.
        Anti-stress neuropharmacological mechanisms and targets for addiction treatment: a translational framework.
        Neurobiol Stress. 2018; 9: 84-104https://doi.org/10.1016/j.ynstr.2018.08.003
        • Baimel C
        • Bartlett SE
        • Chiou L-C
        • et al.
        Orexin/hypocretin role in reward: implications for opioid and other addictions.
        Br J Pharmacol. 2015; 172: 334-348https://doi.org/10.1111/bph.12639
        • Brown RM
        • Khoo SY-S
        • Lawrence AJ.
        Central orexin (hypocretin) 2 receptor antagonism reduces ethanol self-administration, but not cue-conditioned ethanol-seeking, in ethanol-preferring rats.
        Int J Neuropsychopharmacol. 2013; 16: 2067-2079https://doi.org/10.1017/S1461145713000333
        • Shoblock JR
        • Welty N
        • Aluisio L
        • et al.
        Selective blockade of the orexin-2 receptor attenuates ethanol self-administration, place preference, and reinstatement.
        Psychopharmacology (Berl). 2011; 215: 191-203https://doi.org/10.1007/s00213-010-2127-x
        • Uslaner JM
        • Winrow CJ
        • Gotter AL
        • et al.
        Selective orexin 2 receptor antagonism blocks cue-induced reinstatement, but not nicotine self-administration or nicotine-induced reinstatement.
        Behav Brain Res. 2014; 269: 61-65https://doi.org/10.1016/j.bbr.2014.04.012
        • Campbell EJ
        • Marchant NJ
        • Lawrence AJ.
        A sleeping giant: suvorexant for the treatment of alcohol use disorder?.
        Brain Res. 2020; 1731145902https://doi.org/10.1016/j.brainres.2018.08.005
        • James MH
        • Fragale JE
        • O'Connor SL
        • Zimmer BA
        • Aston-Jones G
        The orexin (hypocretin) neuropeptide system is a target for novel therapeutics to treat cocaine use disorder with alcohol coabuse.
        Neuropharmacology. 2021; 183108359https://doi.org/10.1016/j.neuropharm.2020.108359
        • James MH
        • Fragale JE
        • Aurora RN
        • Cooperman NA
        • Langleben DD
        • Aston-Jones G
        Repurposing the dual orexin receptor antagonist suvorexant for the treatment of opioid use disorder: why sleep on this any longer?.
        Neuropsychopharmacology. 2020; 45: 717-719https://doi.org/10.1038/s41386-020-0619-x
        • Matzeu A
        • Martin-Fardon R.
        Targeting the orexin system for prescription opioid use disorder.
        Brain Sci. 2020; 10: 226https://doi.org/10.3390/brainsci10040226
        • Roehrs TA
        • Auciello J
        • Tseng J
        • Whiteside G.
        Current and potential pharmacological treatment options for insomnia in patients with alcohol use disorder in recovery.
        Neuropsychopharmacol Rep. 2020; 40: 211-223https://doi.org/10.1002/npr2.12117