Advertisement
Original Research Article| Volume 235, P1-14, September 2021

Download started.

Ok

Molecular mapping of platelet hyperreactivity in diabetes: the stress proteins complex HSPA8/Hsp90/CSK2α and platelet aggregation in diabetic and normal platelets

  • Gemma Chiva-Blanch
    Correspondence
    Reprint requests: Gemma Chiva-Blanch, Endocrinology and Nutrition Department, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain.
    Affiliations
    Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain

    Endocrinology and Nutrition Department, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain

    Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
    Search for articles by this author
  • Esther Peña
    Affiliations
    Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain

    Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
    Search for articles by this author
  • Judit Cubedo
    Affiliations
    Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain
    Search for articles by this author
  • Maisa García-Arguinzonis
    Affiliations
    Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain
    Search for articles by this author
  • Adriana Pané
    Affiliations
    Endocrinology and Nutrition Department, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
    Search for articles by this author
  • Pedro A Gil
    Affiliations
    Endocrinology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
    Search for articles by this author
  • Antonio Perez
    Affiliations
    Endocrinology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain

    Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
    Search for articles by this author
  • Emilio Ortega
    Affiliations
    Endocrinology and Nutrition Department, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain

    Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
    Search for articles by this author
  • Teresa Padró
    Affiliations
    Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain

    Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
    Search for articles by this author
  • Lina Badimon
    Correspondence
    Reprint requests: Lina Badimon, Cardiovascular Program-ICCC, IR-Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, Pavelló 11, 08025 Barcelona, Spain.
    Affiliations
    Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain

    Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
    Search for articles by this author
Published:April 19, 2021DOI:https://doi.org/10.1016/j.trsl.2021.04.003
      The molecular understanding of the pathophysiological changes elicited by diabetes in platelets may help in further elucidating the involvement of this pseudo-cell in the increased risk of developing cardiovascular disease and thrombosis in diabetic subjects. We aimed to investigate the differential characteristics of platelets from diabetic patients and nondiabetic controls to unveil the molecular mechanisms behind the increased platelet reactivity in diabetes. We compared platelets from diabetic and control subjects by 2 dimensional-electrophoresis followed by mass spectrometry. Changes in selected differential proteins were validated by immunoprecipitation assays and western blot. Platelet aggregation was measured by light transmittance aggregometry induced by collagen and ADP, and dynamic coagulation analysis of whole blood was measured by thromboelastometry. We observed significant differences in proteins related to platelet aggregation, cell migration, and cell homeostasis. Subjects with diabetes showed higher platelet aggregation and thrombogenicity and higher contents of the stress-related protein complex HSPA8/Hsp90/CSK2α than nondiabetic subjects. Changes in the chaperones HSPA8 and Hsp90, and in CSK2α protein contents correlated with changes in platelet aggregation and blood coagulation activity. In conclusion, the complex HSPA8/Hsp90/CSK2α is involved in diabetes-related platelet hyperreactivity. The role of the HSPA8/Hsp90/CSK2α complex may become a molecular target for the development of future preventive and therapeutic strategies for platelet dysfunction associated with diabetes and its complications.

      Abbreviations

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. IDF Diabetes Atlas 9th edition 2019. https://diabetesatlas.org/en/. Accessed February 12, 2020.

        • Piepoli M.F.
        • Abreu A.
        • Albus C.
        • et al.
        Update on cardiovascular prevention in clinical practice: a position paper of the European Association of Preventive Cardiology of the European Society of Cardiology*.
        Eur J Prev Cardiol. 2020; 27: 181-205https://doi.org/10.1177/2047487319893035
        • Hernandez Vera R.
        • Vilahur G.
        • Ferrer-Lorente R.
        • et al.
        Platelets derived from the bone marrow of diabetic animals show dysregulated endoplasmic reticulum stress proteins that contribute to increased thrombosis.
        Arterioscler Thromb Vasc Biol. 2012; 32: 2141-2148https://doi.org/10.1161/ATVBAHA.112.255281
        • Chiva-Blanch G.
        • Suades R.
        • Padró T.
        • et al.
        Microparticle shedding by erythrocytes, monocytes and vascular smooth muscular cells is reduced by aspirin in diabetic patients.
        Rev Española Cardiol (English Ed. 2016; 69: 672-680https://doi.org/10.1016/j.rec.2015.12.033
        • Pignone M.
        • Alberts M.J.
        • Colwell J.A.
        • et al.
        Aspirin for primary prevention of cardiovascular events in people with diabetes: a position statement of the American Diabetes Association, a Scientific Statement of the American Heart Association, and an Expert Consensus Document of the American College of Cardiology Foundation.
        Circulation. 2010; 121: 2694-2701https://doi.org/10.1161/CIR.0b013e3181e3b133
        • Hu L.
        • Chang L.
        • Zhang Y.
        • et al.
        Platelets express activated P2Y12 receptor in patients with diabetes mellitus.
        Circulation. 2017; 136: 817-833https://doi.org/10.1161/CIRCULATIONAHA.116.026995
        • Cubedo J.
        • Vilahur G.
        • Casaní L.
        • et al.
        Targeting the molecular mechanisms of ischemic damage: Protective effects of alpha-crystallin-B.
        Int J Cardiol. 2016; 215: 406-416https://doi.org/10.1016/j.ijcard.2016.04.072
        • Padró T.
        • Peña E.
        • García-Arguinzonis M.
        • et al.
        Low-density lipoproteins impair migration of human coronary vascular smooth muscle cells and induce changes in the proteomic profile of myosin light chain.
        Cardiovasc Res. 2008; 77: 211-220https://doi.org/10.1093/cvr/cvm045
        • Xiong Y.
        • Westhead E.W.
        • Slakey L.L.
        Role of phosphodiesterase isoenzymes in regulating intracellular cyclic AMP in adenosine-stimulated smooth muscle cells.
        Biochem J. 1995; 305 (2): 627-633https://doi.org/10.1042/bj3050627
        • Peña E.
        • Arderiu G.
        • Badimon L.
        Protein disulphide-isomerase A2 regulated intracellular tissue factor mobilisation in migrating human vascular smooth muscle cells.
        Thromb Haemost. 2015; 113: 891-902https://doi.org/10.1160/TH14-09-0776
        • Molins B.
        • Peña E.
        • Padro T.
        • et al.
        Glucose-regulated protein 78 and platelet deposition: Effect of rosuvastatin.
        Arterioscler Thromb Vasc Biol. 2010; 30: 1246-1252https://doi.org/10.1161/ATVBAHA.110.205112
        • Camino-López S.
        • Llorente-Cortés V.
        • Sendra J.
        • et al.
        Tissue factor induction by aggregated LDL depends on LDL receptor-related protein expression (LRP1) and Rho A translocation in human vascular smooth muscle cells.
        Cardiovasc Res. 2007; 73: 208-216https://doi.org/10.1016/j.cardiores.2006.10.017
        • Vilahur G.
        • Choi B.G.
        • Zafar M.U.
        • et al.
        Normalization of platelet reactivity in clopidogrel-treated subjects.
        J Thromb Haemost. 2007; 5: 82-90https://doi.org/10.1111/j.1538-7836.2006.02245.x
        • Polanowska-Grabowska R.
        • Gear A.R.L.
        Heat-shock proteins and platelet function.
        Platelets. 2000; 11: 6-22https://doi.org/10.1080/09537100075742
        • Jackson J.W.
        • Rivera-Marquez G.
        • Beebe K.
        • et al.
        Pharmacologic dissection of the overlapping impact of heat shock protein family members on platelet function.
        J Thromb Haemost. 2020; (Februaryjth.14758)https://doi.org/10.1111/jth.14758
        • Polanowska-Grabowska R.
        • Simon C.G.
        • Falchetto R.
        • et al.
        Platelet adhesion to collagen under flow causes dissociation of a phosphoprotein complex of heat-shock proteins and protein phosphatase 1.
        Blood. 1997; 90: 1516-1526https://doi.org/10.1182/blood.V90.4.1516
        • Suttitanamongkol S.
        • Polanowska-Grabowska R.
        • Gear A.R.L.
        Heat-shock protein 90 complexes in resting and thrombin-activated platelets.
        Biochem Biophys Res Commun. 2002; 297: 129-133https://doi.org/10.1016/s0006-291x(02)02138-1
        • Stricher F.
        • Macri C.
        • Ruff M.
        • et al.
        HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting.
        Autophagy. 2013; 9: 1937-1954https://doi.org/10.4161/auto.26448
        • Atalay M.
        • Oksala N.
        • Lappalainen J.
        • et al.
        Heat shock proteins in diabetes and wound healing.
        Curr Protein Pept Sci. 2009; 10: 85-95https://doi.org/10.2174/138920309787315202
        • Krause M.
        • Rodrigues-Krause J da C.
        Extracellular heat shock proteins (eHSP70) in exercise: possible targets outside the immune system and their role for neurodegenerative disorders treatment.
        Med Hypotheses. 2011; 76: 286-290https://doi.org/10.1016/j.mehy.2010.10.025
        • Rahnel H.
        • Viht K.
        • Lavogina D.
        • et al.
        A selective biligand inhibitor of CK2 increases Caspase-3 activity in cancer cells and inhibits platelet aggregation.
        ChemMedChem. 2017; 12: 1723-1736https://doi.org/10.1002/cmdc.201700457
        • Nakanishi K.
        • Komada Y.
        • Hayashi T.
        • et al.
        Protease activated receptor 1 activation of platelet is associated with an increase in protein kinase CK2 activity.
        J Thromb Haemost. 2008; 6: 1046-1048https://doi.org/10.1111/j.1538-7836.2008.02955.x
        • Ryu S.Y.
        • Kim S.
        Evaluation of CK2 inhibitor (E)-3-(2,3,4,5-tetrabromophenyl)acrylic acid (TBCA) in regulation of platelet function.
        Eur J Pharmacol. 2013; 720: 391-400https://doi.org/10.1016/j.ejphar.2013.09.064
        • Ampofo E.
        • Müller I.
        • Dahmke I.N.
        • et al.
        Role of protein kinase CK2 in the dynamic interaction of platelets, leukocytes and endothelial cells during thrombus formation.
        Thromb Res. 2015; 136: 996-1006https://doi.org/10.1016/j.thromres.2015.08.023
        • Cho H.J.
        • Gee H.Y.
        • Baek K.-H.
        • et al.
        A small molecule that binds to an ATPase domain of Hsc70 promotes membrane trafficking of mutant cystic fibrosis transmembrane conductance regulator.
        J Am Chem Soc. 2011; 133: 20267-20276https://doi.org/10.1021/ja206762p
        • Rigg R.A.
        • Healy L.D.
        • Nowak M.S.
        • et al.
        Heat shock protein 70 regulates platelet integrin activation, granule secretion and aggregation.
        Am J Physiol - Cell Physiol. 2016; 310: C568-C575https://doi.org/10.1152/ajpcell.00362.2015
        • Taipale M.
        • Krykbaeva I.
        • Koeva M.
        • et al.
        Quantitative analysis of Hsp90-client interactions reveals principles of substrate recognition.
        Cell. 2012; 150: 987-1001https://doi.org/10.1016/j.cell.2012.06.047
        • Lalo U.
        • Jones S.
        • Roberts J.A.
        • et al.
        Heat shock protein 90 inhibitors reduce trafficking of ATP-gated P2X1 receptors and human platelet responsiveness.
        J Biol Chem. 2012; 287: 32747-32754https://doi.org/10.1074/jbc.M112.376566
        • Hernández Vera R.
        • Vilahur G.
        • Badimon L.
        Obesity with insulin resistance increase thrombosis in wild-type and bone marrow-transplanted Zucker fatty rats.
        Thromb Haemost. 2012; 109: 319-327https://doi.org/10.1160/TH12-09-0696