Advertisement
Research Article| Volume 235, P62-76, September 2021

Download started.

Ok

Amplifying effect of chronic lisinopril therapy on diastolic function and the angiotensin-(1-7) Axis by the G1 agonist in ovariectomized spontaneously hypertensive rats

Published:April 25, 2021DOI:https://doi.org/10.1016/j.trsl.2021.04.004
      G protein-coupled estrogen receptor (GPER) activation by G1 attenuates diastolic dysfunction from estrogen loss, which may be partly due to suppression of angiotensin II pathological actions. We aimed to determine the independent effects of 8 weeks of G1 (100 µg/kg/d, subcutaneous pellet), ACE-inhibition (ACEi; lisinopril 10 mg/kg, drinking water), or combination therapy versus vehicle in the ovariectomized (OVX) spontaneously hypertensive rat (SHR) on cardiac function and morphometrics (echocardiography), serum equilibrium of angiotensins (mass spectroscopy) and cardiac components of the RAS (Western blotting). G1 alone and when combined with ACEi enhanced myocardial relaxation (é: 30 and 17%) and diastolic wall strain (DWS: 76 and 68%) while reducing relative wall thickness (RWT: 20 and 33%) and filling pressures (E/é: 30 and 37%). Cardiac expression levels of Mas receptor (Mas-R) and ACE2 also increased in the presence of G1. Strong antihypertensive effects of lisinopril monotherapy were associated with reductions in RWT, collagen deposition and E/é without overtly altering é or DWS. Chronic ACEi also increased cardiac levels of Mas-R and AT1-R and tilted the circulating RAS toward the formation of Ang-(1–7), which was amplified in the presence of G1. In vitro studies further revealed that an inhibitor to prolyl endopeptidase (PEP), but not to neprilysin, significantly reduced serum Ang-(1–7) levels in G1-treated rats, suggesting that G1 might be increasing Ang-(1–7) formation via PEP. We conclude that activating GPER with G1 augments components of the cardiac RAS and improves diastolic function without lowering blood pressure, and that lisinopril-induced blood pressure control and cardiac alterations in OVX SHR are permissive in facilitating G1 to augment Ang-(1–7) in serum, thereby strengthening its cardioprotective benefits.

      Abbreviations:

      ACE (angiotensin converting enzyme), ACE2 (angiotensin-converting enzyme 2), ACEi (angiotensin converting enzyme inhibitor), ADAM (a disintegrin and metalloprotease domain 17), AmP (aminopeptidase), Ang I (angiotensin I), Ang II (angiotensin II), Ang-(1-7) (angiotensin-(1-7)), Ang-(1-12) (angiotensin-(1-12)), AP (angiotensin peptide), AT1-R (angiotensin II receptor type 1), AWT (anterior wall thickness), AWTed (anterior wall thickness end diastole), COL1A1 (collagen type 1 alpha 1 chain), COL3A1 (collagen type III alpha 1 chain), DAP (aspartyl aminopeptidase), DWS (diastolic wall strain), FS (fractional shortening), GPER (G protein-coupled estrogen receptor), Lis (lisinopril), LV (left ventricular), LVEDD (left ventricular end-diastolic dimension), LVEF (left ventricular ejection fraction), LVESD (left ventricular end-systolic dimension), Mas-R (Mas receptor), NEP (neprilysin or neutral endopeptidase), OVX (ovariectomy), PEP (prolyl endopeptidase), PWT (posterior wall thickness), PWTed (posterior wall thickness end-diastole), PWTes (posterior wall thickness end-systole), RAS (renin-angiotensin system), RWT (relative wall thickness), SBP (systolic blood pressure), SHR (spontaneously hypertensive rat), THOP (thimet oligopeptidase 1), Veh (vehicle), ZPP (Z-prolyl prolinal)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Patel VH
        • Chen J
        • Ramanjaneya M
        • et al.
        G-protein coupled estrogen receptor 1 expression in rat and human heart: Protective role during ischaemic stress.
        Int J Mol Med. 2010; 26: 193-199
        • Jessup JA
        • Lindsey SH
        • Wang H
        • Chappell MC
        • Groban L.
        Attenuation of salt-induced cardiac remodeling and diastolic dysfunction by the GPER agonist G-1 in female mRen2.Lewis rats.
        PLoS One. 2010; 5: e15433
        • De Francesco EM
        • Rocca C
        • Scavello F
        • et al.
        Protective role of GPER agonist G-1 on cardiotoxicity induced by doxorubicin.
        J Cell Physiol. 2017; 232: 1640-1649
        • Alencar AKN
        • Montes GC
        • Costa DG
        • et al.
        Cardioprotection induced by activation of GPER in ovariectomized rats with pulmonary hypertension.
        J Gerontol A Biol Sci Med Sci. 2018; 73: 1158-1166
        • Ogola BO
        • Zimmerman MA
        • Sure VN
        • et al.
        G protein-coupled estrogen receptor protects from angiotensin II-induced increases in pulse pressure and oxidative stress.
        Front Endocrinol (Lausanne). 2019; 10: 586
        • da Silva JS
        • Sun X
        • Ahmad S
        • et al.
        G-protein-coupled estrogen receptor agonist G1 improves diastolic function and attenuates cardiac renin-angiotensin system activation in estrogen-deficient hypertensive rats.
        J Cardiovasc Pharmacol. 2019; 74: 443-452
        • Wang H
        • Jessup JA
        • Lin MS
        • Chagas C
        • Lindsey SH
        • Groban L.
        Activation of GPR30 attenuates diastolic dysfunction and left ventricle remodelling in oophorectomized mRen2.Lewis rats.
        Cardiovasc Res. 2012; 94: 96-104
        • Alencar AK
        • da Silva JS
        • Lin M
        • et al.
        Effect of age, estrogen status, and late-life GPER activation on cardiac structure and function in the Fischer344xBrown Norway female rat.
        J Gerontol A Biol Sci Med Sci. 2017; 72: 152-162
        • Groban L
        • Tran QK
        • Ferrario CM
        • et al.
        Female heart health: is GPER the missing link?.
        Front Endocrinol (Lausanne). 2019; 10: 919
        • Lindsey SH
        • Cohen JA
        • Brosnihan KB
        • Gallagher PE
        • Chappell MC.
        Chronic treatment with the G protein-coupled receptor 30 agonist G-1 decreases blood pressure in ovariectomized mRen2.Lewis rats.
        Endocrinology. 2009; 150: 3753-3758
        • Koganti S
        • Snyder R
        • Gumaste U
        • Karamyan VT
        • Thekkumkara T.
        2-methoxyestradiol binding of GPR30 down-regulates angiotensin AT(1) receptor.
        Eur J Pharmacol. 2014; 723: 131-140
        • Wang H
        • Jessup JA
        • Zhao Z
        • et al.
        Characterization of the cardiac renin angiotensin system in oophorectomized and estrogen-replete mRen2.Lewis rats.
        PLoS One. 2013; 8: e76992
        • Garg R
        • Yusuf S.
        Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure.
        JAMA. 1995; 273: 1450-1456
        • Ghali JK
        • Lindenfeld J.
        Sex differences in response to chronic heart failure therapies.
        Expert Rev Cardiovasc Ther. 2008; 6: 555-565
        • Shekelle PG
        • Rich MW
        • Morton SC
        • et al.
        Efficacy of angiotensin-converting enzyme inhibitors and beta-blockers in the management of left ventricular systolic dysfunction according to race, gender, and diabetic status: a meta-analysis of major clinical trials.
        J Am Coll Cardiol. 2003; 41: 1529-1538
        • Wing LM
        • Reid CM
        • Ryan P
        • et al.
        A comparison of outcomes with angiotensin-converting–enzyme inhibitors and diuretics for hypertension in the elderly.
        N Engl J Med. 2003; 348: 583-592
        • Ferrario CM
        • Jessup J
        • Chappell MC
        • et al.
        Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2.
        Circulation. 2005; 111: 2605-2610
        • Ferrario CM
        • VonCannon J
        • Ahmad S
        • et al.
        Activation of the human angiotensin-(1-12)-chymase pathway in rats with human angiotensinogen gene transcripts.
        Front Cardiovasc Med. 2019; 6: 163
        • Jessup JA
        • Brosnihan KB
        • Gallagher PE
        • Chappell MC
        • Ferrario CM.
        Differential effect of low dose thiazides on the Renin Angiotensin system in genetically hypertensive and normotensive rats.
        J Am Soc Hypertens. 2008; 2: 106-115
        • Zhao Z
        • Wang H
        • Jessup JA
        • Lindsey SH
        • Chappell MC
        • Groban L.
        Role of estrogen in diastolic dysfunction.
        Am J Physiol Heart Circ Physiol. 2014; 306: H628-H640
        • Ahmad S
        • Sun X
        • Lin M
        • et al.
        Blunting of estrogen modulation of cardiac cellular chymase/RAS activity and function in SHR.
        J Cell Physiol. 2018; 233: 3330-3342
        • Lindsey ML
        • Kassiri Z
        • Virag JAI
        • de Castro Brás LE
        • Scherrer-Crosbie M.
        Guidelines for measuring cardiac physiology in mice.
        Am J Physiol Heart Circ Physiol. 2018; 314: H733-Hh52
        • Yalçin F
        • Kaftan A
        • Muderrisoğlu H
        • et al.
        Is Doppler tissue velocity during early left ventricular filling preload independent?.
        Heart. 2002; 87: 336-339
        • Takeda Y
        • Sakata Y
        • Higashimori M
        • et al.
        Noninvasive assessment of wall distensibility with the evaluation of diastolic epicardial movement.
        J Card Fail. 2009; 15: 68-77
        • Kamimura D
        • Suzuki T
        • Hall ME
        • et al.
        Diastolic wall strain is associated with incident heart failure in African Americans: Insights from the atherosclerosis risk in communities study.
        J Cardiol. 2018; 71: 477-483
        • Basu R
        • Poglitsch M
        • Yogasundaram H
        • Thomas J
        • Rowe BH
        • Oudit GY.
        Roles of angiotensin peptides and recombinant human ACE2 in heart failure.
        J Am Coll Cardiol. 2017; 69: 805-819
        • Pavo N
        • Goliasch G
        • Wurm R
        • et al.
        Low- and high-renin heart failure phenotypes with clinical implications.
        Clin Chem. 2018; 64: 597-608
        • Binder C
        • Poglitsch M
        • Agibetov A
        • et al.
        Angs (Angiotensins) of the alternative renin-angiotensin system predict outcome in patients with heart failure and preserved ejection fraction.
        Hypertension. 2019; 74: 285-294
        • Domenig O
        • Manzel A
        • Grobe N
        • et al.
        Neprilysin is a mediator of alternative renin-angiotensin-system activation in the murine and human kidney.
        Sci Rep. 2016; 6: 33678
        • Welches WR
        • Santos RA
        • Chappell MC
        • Brosnihan KB
        • Greene LJ
        • Ferrario CM.
        Evidence that prolyl endopeptidase participates in the processing of brain angiotensin.
        J Hypertens. 1991; 9: 631-638
        • Docherty KF
        • Vaduganathan M
        • Solomon SD
        • McMurray JJV.
        Sacubitril/valsartan: neprilysin inhibition 5 years after PARADIGM-HF.
        JACC Heart Fail. 2020; 8: 800-810
        • Gallagher PE
        • Chappell MC
        • Ferrario CM
        • Tallant EA.
        Distinct roles for ANG II and ANG-(1-7) in the regulation of angiotensin-converting enzyme 2 in rat astrocytes.
        Am J Physiol Cell Physiol. 2006; 290: C420-C426
        • Trask AJ
        • Averill DB
        • Ganten D
        • Chappell MC
        • Ferrario CM.
        Primary role of angiotensin-converting enzyme-2 in cardiac production of angiotensin-(1-7) in transgenic Ren-2 hypertensive rats.
        Am J Physiol Heart Circ Physiol. 2007; 292: H3019-H3024
        • da Silva JS
        • Gabriel-Costa D
        • Wang H
        • Ahmad S
        • Sun X
        • Varagic J
        • et al.
        Blunting of cardioprotective actions of estrogen in female rodent heart linked to altered expression of cardiac tissue chymase and ACE2.
        J Renin Angiotensin Aldosterone Syst. 2017; 181470320317722270
        • Chappell MC
        • Tallant EA
        • Brosnihan KB
        • Ferrario CM.
        Processing of angiotensin peptides by NG108-15 neuroblastoma x glioma hybrid cell line.
        Peptides. 1990; 11: 375-380
        • Welches WR
        • Brosnihan KB
        • Ferrario CM.
        A comparison of the properties and enzymatic activities of three angiotensin processing enzymes: angiotensin converting enzyme, prolyl endopeptidase and neutral endopeptidase 24.11.
        Life Sci. 1993; 52: 1461-1480
        • Ferrario CM
        • Dell Italia LJ
        • Varagic J
        Molecular signaling mechanisms of the renin-angiotensin system in heart failure.
        in: Felker GM Mann DL HEART FAILURE A Companion to Braunwald's Heart Disease. Fourth Edition ed. ELSEVIER, Philadelphia, PA2020: 76-90
        • Zhang X
        • Cheng HJ
        • Zhou P
        • et al.
        Cellular basis of angiotensin-(1-7)-induced augmentation of left ventricular functional performance in heart failure.
        Int J Cardiol. 2017; 236: 405-412
        • Benter IF
        • Yousif MH
        • Anim JT
        • Cojocel C
        • Diz DI.
        Angiotensin-(1-7) prevents development of severe hypertension and end-organ damage in spontaneously hypertensive rats treated with L-NAME.
        Am J Physiol Heart Circ Physiol. 2006; 290: H684-HH91
        • Ferreira Filho C
        • Abreu LC
        • Valenti VE
        • et al.
        Anti-hypertensive drugs have different effects on ventricular hypertrophy regression.
        Clinics (Sao Paulo). 2010; 65: 723-728
        • Satoh S
        • Ueda Y
        • Suematsu N
        • et al.
        Beneficial effects of angiotensin-converting enzyme inhibition on sarcoplasmic reticulum function in the failing heart of the Dahl rat.
        Circ J. 2003; 67: 705-711
        • Anning PB
        • Grocott-Mason RM
        • Lewis MJ
        • Shah AM.
        Enhancement of left ventricular relaxation in the isolated heart by an angiotensin-converting enzyme inhibitor.
        Circulation. 1995; 92: 2660-2665
        • Haber HL
        • Powers ER
        • Gimple LW
        • et al.
        Intracoronary angiotensin-converting enzyme inhibition improves diastolic function in patients with hypertensive left ventricular hypertrophy.
        Circulation. 1994; 89: 2616-2625
        • Ohtani T
        • Mohammed SF
        • Yamamoto K
        • et al.
        Diastolic stiffness as assessed by diastolic wall strain is associated with adverse remodelling and poor outcomes in heart failure with preserved ejection fraction.
        Eur Heart J. 2012; 33: 1742-1749
        • Selvaraj S
        • Aguilar FG
        • Martinez EE
        • et al.
        Diastolic wall strain: a simple marker of abnormal cardiac mechanics.
        Cardiovasc Ultrasound. 2014; 12: 40
        • Ferrario CM
        • Ahmad S
        • Groban L.
        Twenty years of progress in angiotensin converting enzyme 2 and its link to SARS-CoV-2 disease.
        Clin Sci (Lond). 2020; 134: 2645-2664
        • Groban L
        • Wang H
        • Sun X
        • Ahmad S
        • Ferrario CM.
        Is sex a determinant of COVID-19 infection? Truth or myth?.
        Curr Hypertens Rep. 2020; 22: 62
        • Silva GM
        • Vogel C.
        Quantifying gene expression: the importance of being subtle.
        Mol Syst Biol. 2016; 12: 885
        • Xu J
        • Mukerjee S
        • Silva-Alves CR
        • et al.
        A disintegrin and metalloprotease 17 in the cardiovascular and central nervous systems.
        Front Physiol. 2016; 7: 469
        • Wang W
        • Patel VB
        • Parajuli N
        • et al.
        Heterozygote loss of ACE2 is sufficient to increase the susceptibility to heart disease.
        J Mol Med (Berl). 2014; 92: 847-858
        • Zhong J
        • Basu R
        • Guo D
        • et al.
        Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction.
        Circulation. 2010; 122 (18 p following 28): 717-728
        • Ramchand J
        • Burrell LM.
        Circulating ACE2: a novel biomarker of cardiovascular risk.
        Lancet. 2020; 396: 937-939
        • Gooz M.
        ADAM-17: the enzyme that does it all.
        Crit Rev Biochem Mol Biol. 2010; 45: 146-169
        • Wang H
        • Sun X
        • Chou J
        • et al.
        Inflammatory and mitochondrial gene expression data in GPER-deficient cardiomyocytes from male and female mice.
        Data Brief. 2017; 10: 465-473