Advertisement

Cholecystokinin attenuates β-cell apoptosis in both mouse and human islets

Published:November 02, 2021DOI:https://doi.org/10.1016/j.trsl.2021.10.005
      Loss of functional pancreatic β-cell mass and increased β-cell apoptosis are fundamental to the pathophysiology of type 1 and type 2 diabetes. Pancreatic islet transplantation has the potential to cure type 1 diabetes but is often ineffective due to the death of the islet graft within the first few years after transplant. Therapeutic strategies to directly target pancreatic β-cell survival are needed to prevent and treat diabetes and to improve islet transplant outcomes. Reducing β-cell apoptosis is also a therapeutic strategy for type 2 diabetes. Cholecystokinin (CCK) is a peptide hormone typically produced in the gut after food intake, with positive effects on obesity and glucose metabolism in mouse models and human subjects. We have previously shown that pancreatic islets also produce CCK. The production of CCK within the islet promotes β-cell survival in rodent models of diabetes and aging. We demonstrate a direct effect of CCK to reduce cytokine-mediated apoptosis in a β-cell line and in isolated mouse islets in a receptor-dependent manner. However, whether CCK can protect human β-cells was previously unknown. Here, we report that CCK can also reduce cytokine-mediated apoptosis in isolated human islets and CCK treatment in vivo decreases β-cell apoptosis in human islets transplanted into the kidney capsule of diabetic NOD/SCID mice. Collectively, these data identify CCK as a novel therapy that can directly promote β-cell survival in human islets and has therapeutic potential to preserve β-cell mass in diabetes and as an adjunct therapy after transplant.
      To read this article in full you will need to make a payment

      References

        • Klöppel G
        • Löhr M
        • Habich K
        • Oberholzer M
        • Heitz PU.
        Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited.
        Pathol Immunopath R. 2008; 4: 110-125https://doi.org/10.1159/000156969
        • Butler AE
        • Janson J
        • Soeller WC
        • Butler PC.
        Increased β-cell apoptosis prevents adaptive increase in β-cell mass in mouse model of type 2 diabetes evidence for role of islet amyloid formation rather than direct action of amyloid.
        Diabetes. 2003; 52: 2304-2314https://doi.org/10.2337/diabetes.52.9.2304
        • Prentki M
        • Nolan CJ.
        Islet β cell failure in type 2 diabetes.
        J Clin Invest. 2006; 116
        • Tao Z
        • Shi A
        • Zhao J.
        Epidemiological perspectives of diabetes.
        Cell Biochem Biophys. 2015; 73: 181-185https://doi.org/10.1007/s12013-015-0598-4
      1. National Diabetes Statistics Report, 2020.Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services; 2020.

        • Vetere A
        • Choudhary A
        • Burns SM
        • Wagner BK.
        Targeting the pancreatic β-cell to treat diabetes.
        Nat Rev Drug Discov. 2014; 13: 278-289https://doi.org/10.1038/nrd4231
        • Song I
        • Muller C
        • Louw J
        • Bouwens L.
        Regulating the beta cell mass as a strategy for type-2 diabetes treatment.
        Curr Drug Targets. 2015; 16: 516-524https://doi.org/10.2174/1389450116666150204113928
        • Sutherland DER
        • Matas AJ
        • Najarian JS.
        Pancreatic islet cell transplantation.
        Surg Clin N Am. 1978; 58: 365-382https://doi.org/10.1016/s0039-6109(16)41489-1
        • Langer RM.
        Islet transplantation: lessons learned since the edmonton breakthrough.
        Transplant P. 2010; 42: 1421-1424https://doi.org/10.1016/j.transproceed.2010.04.021
        • Shapiro AMJ
        • Pokrywczynska M
        • Ricordi C.
        Clinical pancreatic islet transplantation.
        Nat Rev Endocrinol. 2016; 13: 268-277https://doi.org/10.1038/nrendo.2016.178
        • Miyasaka K
        • Funakoshi A.
        Cholecystokinin and cholecystokinin receptors.
        J Gastroenterol. 2003; 38: 1-13https://doi.org/10.1007/s005350300000
        • Zhao X-Y
        • Ling Y-L
        • Li Y-G
        • Meng A-H
        • Xing H-Y.
        Cholecystokinin octapeptide improves cardiac function by activating cholecystokinin octapeptide receptor in endotoxic shock rats.
        World J Gastroentero. 2005; 11: 3405-3410https://doi.org/10.3748/wjg.v11.i22.3405
        • Miyamoto S
        • Shikata K
        • Miyasaka K
        • et al.
        Cholecystokinin plays a novel protective role in diabetic kidney through anti-inflammatory actions on macrophage anti-inflammatory effect of cholecystokinin.
        Diabetes. 2012; 61: 897-907https://doi.org/10.2337/db11-0402
        • Zuelli FM das GC
        • Cárnio EC
        • Saia RS.
        Cholecystokinin protects rats against sepsis induced by Staphylococcus aureus.
        Med Microbiol Immun. 2014; 203: 165-176https://doi.org/10.1007/s00430-014-0328-3
        • Sui Y
        • Vermeulen R
        • Hökfelt T
        • Horne MK
        • Stanić D.
        Female mice lacking cholecystokinin 1 receptors have compromised neurogenesis, and fewer dopaminergic cells in the olfactory bulb.
        Front Cell Neurosci. 2013; 7: 13https://doi.org/10.3389/fncel.2013.00013
        • Reisi P
        • Ghaedamini AR
        • Golbidi M
        • Shabrang M
        • Arabpoor Z
        • Rashidi B.
        Effect of cholecystokinin on learning and memory, neuronal proliferation and apoptosis in the rat hippocampus.
        Adv Biomed Res. 2015; 4: 227https://doi.org/10.4103/2277-9175.166650
        • Nishimura S
        • Bilgüvar K
        • Ishigame K
        • Sestan N
        • Günel M
        • Louvi A.
        Functional synergy between cholecystokinin receptors CCKAR and CCKBR in mammalian brain development.
        Plos One. 2015; 10e0124295https://doi.org/10.1371/journal.pone.0124295
        • Yang S
        • Ling Y
        • Ling Y
        • Duan G
        • Wang J.
        Effect of cholecystokinin-octapeptide on focal cerebral ischemia/reperfusion injury in rats.
        Chin J Pathophysiol. 1986; (Published online)
        • Liu Y
        • Zhang Y
        • Gu Z
        • et al.
        Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells.
        Neural Regen Res. 2014; 9: 1402-1408https://doi.org/10.4103/1673-5374.137596
        • Matson CA
        • Ritter RC.
        Long-term CCK-leptin synergy suggests a role for CCK in the regulation of body weight.
        Am J Physiology-regulatory Integr Comp Physiology. 1999; 276: R1038-R1045https://doi.org/10.1152/ajpregu.1999.276.4.r1038
        • Matson CA
        • Wiater MF
        • Kuijper JL
        • Weigle DS.
        Synergy between leptin and cholecystokinin (CCK) to control daily caloric intake.
        Peptides. 1997; 18: 1275-1278https://doi.org/10.1016/s0196-9781(97)00138-1
        • Matson CA
        • Reid DF
        • Ritter RC.
        Daily CCK injection enhances reduction of body weight by chronic intracerebroventricular leptin infusion.
        Am J Physiology-regulatory Integr Comp Physiology. 2002; 282: R1368-R1373https://doi.org/10.1152/ajpregu.00080.2001
        • Lo C
        • King A
        • Samuelson LC
        • et al.
        Cholecystokinin knockout mice are resistant to high-fat diet-induced obesity.
        Gastroenterology. 2010; 138: 1997-2005https://doi.org/10.1053/j.gastro.2010.01.044
        • Cano V
        • Merino B
        • Ezquerra L
        • Somoza B
        • Ruiz-Gayo M.
        A cholecystokinin-1 receptor agonist (CCK-8) mediates increased permeability of brain barriers to leptin.
        Brit J Pharmacol. 2008; 154: 1009-1015https://doi.org/10.1038/bjp.2008.149
        • Irwin N
        • Frizelle P
        • Montgomery IA
        • Moffett RC
        • O'Harte FPM
        • Flatt PR
        Beneficial effects of the novel cholecystokinin agonist (pGlu-Gln)-CCK-8 in mouse models of obesity/diabetes.
        Diabetologia. 2012; 55: 2747-2758https://doi.org/10.1007/s00125-012-2654-6
        • Irwin N
        • Montgomery IA
        • Moffett RC
        • Flatt PR.
        Chemical cholecystokinin receptor activation protects against obesity-diabetes in high fat fed mice and has sustainable beneficial effects in genetic ob/ob mice.
        Biochem Pharmacol. 2013; 85: 81-91https://doi.org/10.1016/j.bcp.2012.10.008
        • Irwin N
        • Pathak V
        • Flatt PR.
        A novel CCK-8/GLP-1 hybrid peptide exhibiting prominent insulinotropic, glucose-lowering, and satiety actions with significant therapeutic potential in high-fat–fed mice.
        Diabetes. 2015; 64: 2996-3009https://doi.org/10.2337/db15-0220
        • Ahrén B
        • Holst JJ
        • Efendic S.
        Antidiabetogenic action of cholecystokinin-8 in type 2 diabetes.
        J Clin Endocrinol Metabolism. 2000; 85: 1043-1048https://doi.org/10.1210/jcem.85.3.6431
        • Ahrén B
        • Pettersson M
        • Uvnäs-Moberg K
        • Gutniak M
        • Efendic S.
        Effects of cholecystokinin (CCK)-8, CCK-33, and gastric inhibitory polypeptide (GIP) on basal and meal-stimulated pancreatic hormone secretion in man.
        Diabetes Res Clin Pr. 1991; 13: 153-161https://doi.org/10.1016/0168-8227(91)90059-m
        • Souza AH de
        • Tang J
        • Yadev AK
        • et al.
        Intra-islet GLP-1, but not CCK, is necessary for β-cell function in mouse and human islets.
        Sci Rep-uk. 2020; 10: 2823https://doi.org/10.1038/s41598-020-59799-2
        • Lavine JA
        • Raess PW
        • Stapleton DS
        • et al.
        Cholecystokinin is up-regulated in obese mouse islets and expands beta-cell mass by increasing beta-cell survival.
        Endocrinology. 2010; 151: 3577-3588https://doi.org/10.1210/en.2010-0233
        • Lavine JA
        • Kibbe CR
        • Baan M
        • et al.
        Cholecystokinin expression in the β-cell leads to increased β-cell area in aged mice and protects from streptozotocin-induced diabetes and apoptosis.
        Am J Physiol-endoc M. 2015; 309: E819-E828https://doi.org/10.1152/ajpendo.00159.2015
        • Linnemann AK
        • Neuman JC
        • Battiola TJ
        • Wisinski JA
        • Kimple ME
        • Davis DB.
        Glucagon-like peptide-1 regulates cholecystokinin production in β-cells to protect from apoptosis.
        Mol Endocrinol. 2015; 29: 978-987https://doi.org/10.1210/me.2015-1030
        • Lavine JA
        • Attie AD.
        Gastrointestinal hormones and the regulation of β-cell mass.
        Ann Ny Acad Sci. 2010; 1212: 41-58https://doi.org/10.1111/j.1749-6632.2010.05802.x
        • Egozi A
        • Halpern KB
        • Farack L
        • Rotem H
        • Itzkovitz S.
        Zonation of pancreatic acinar cells in diabetic mice.
        Cell Rep. 2020; 32108043https://doi.org/10.1016/j.celrep.2020.108043
        • Ning S
        • Zheng W
        • Su J
        • et al.
        Different downstream signalling of CCK1 receptors regulates distinct functions of CCK in pancreatic beta cells.
        Brit J Pharmacol. 2015; 172: 5050-5067https://doi.org/10.1111/bph.13271
        • Khan D
        • Vasu S
        • Moffett RC
        • Irwin N
        • Flatt PR.
        Expression of gastrin family peptides in pancreatic islets and their role in &bgr;-cell function and survival.
        Pancreas. 2018; 47: 190-199https://doi.org/10.1097/mpa.0000000000000983
        • Graham KL
        • Fynch S
        • Pappas EG
        • Tan C
        • Kay TW
        • Thomas HE.
        Isolation and culture of the islets of Langerhans from mouse pancreas.
        Eur J Immunol. 2015; (Published online)
        • Kopin AS
        • Mathes WF
        • McBride EW
        • et al.
        The cholecystokinin-A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight.
        J Clin Invest. 1999; 103: 383-391https://doi.org/10.1172/jci4901
        • Langhans N
        • Rindi G
        • Chiu M
        • et al.
        Abnormal gastric histology and decreased acid production in cholecystokinin-B/gastrin receptor-deficient mice.
        Gastroenterology. 1997; 112: 280-286https://doi.org/10.1016/s0016-5085(97)90000-7
        • Carter JD
        • Dula SB
        • Corbin KL
        • Wu R
        • Nunemaker CS.
        A practical guide to rodent islet isolation and assessment.
        Biol Proced Online. 2009; 11: 3https://doi.org/10.1007/s12575-009-9021-0
        • Wu Y
        • Tang D
        • Liu N
        • et al.
        Reciprocal regulation between the circadian clock and hypoxia signaling at the genome level in mammals.
        Cell Metab. 2017; 25: 73-85https://doi.org/10.1016/j.cmet.2016.09.009
        • Estil•les E
        • Téllez N
        • Nacher M
        • Montanya E.
        A model for human islet transplantation to immunodeficient streptozotocin-induced diabetic mice.
        Cell Transplant. 2018; 27: 1684-1691https://doi.org/10.1177/0963689718801006
        • Rehfeld JF.
        Accurate measurement of cholecystokinin in plasma.
        Clin Chem. 1998; 44: 991-1001https://doi.org/10.1093/clinchem/44.5.991
        • Pathak V
        • Flatt PR
        • Irwin N.
        Cholecystokinin (CCK) and related adjunct peptide therapies for the treatment of obesity and type 2 diabetes.
        Peptides. 2018; 100 (Diabetes Res. Clin. Pract. 87 3 2010): 229-235https://doi.org/10.1016/j.peptides.2017.09.007
        • Bonni A
        • Brunet A
        • West AE
        • Datta SR
        • Takasu MA
        • Greenberg ME.
        Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms.
        Science. 1999; 286: 1358-1362https://doi.org/10.1126/science.286.5443.1358
        • Zeng Q
        • Ou L
        • Wang W
        • Guo D-Y.
        Gastrin, cholecystokinin, signaling, and biological activities in cellular processes.
        Front Endocrinol. 2020; 11: 112https://doi.org/10.3389/fendo.2020.00112
        • Lu Z
        • Xu S.
        ERK1/2 MAP kinases in cell survival and apoptosis.
        Iubmb Life. 2006; 58: 621-631https://doi.org/10.1080/15216540600957438
        • Engin F.
        ER stress and development of type 1 diabetes.
        J Invest Med. 2016; 64: 2https://doi.org/10.1097/jim.0000000000000229
        • Brozzi F
        • Nardelli TR
        • Lopes M
        • et al.
        Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms.
        Diabetologia. 2015; 58: 2307-2316https://doi.org/10.1007/s00125-015-3669-6
        • Liddle RA
        • Morita ET
        • Conrad CK
        • Williams JA.
        Regulation of gastric emptying in humans by cholecystokinin.
        J Clin Invest. 1986; 77: 992-996https://doi.org/10.1172/jci112401
        • Gibbons C
        • Finlayson G
        • Caudwell P
        • et al.
        Postprandial profiles of CCK after high fat and high carbohydrate meals and the relationship to satiety in humans.
        Peptides. 2016; 77: 3-8https://doi.org/10.1016/j.peptides.2015.09.010
        • Brissova M
        • Shostak A
        • Shiota M
        • et al.
        Pancreatic islet production of vascular endothelial growth factor-a is essential for islet vascularization, revascularization, and function.
        Diabetes. 2006; 55: 2974-2985https://doi.org/10.2337/db06-0690
        • Montolio M
        • Biarnés M
        • Téllez N
        • Escoriza J
        • Soler J
        • Montanya E.
        Interleukin-1β and inducible form of nitric oxide synthase expression in early syngeneic islet transplantation.
        J Endocrinol. 2007; 192: 169-177https://doi.org/10.1677/joe.1.06968
        • Lavine JA
        • Raess PW
        • Davis DB
        • et al.
        Contamination with E1A-positive wild-type adenovirus accounts for species-specific stimulation of islet cell proliferation by CCK: a cautionary note.
        Mol Endocrinol. 2010; 24: 464-467https://doi.org/10.1210/me.2009-0384
        • Liao C-C
        • Liou A-T
        • Chang Y-S
        • et al.
        Immunodeficient mouse models with different disease profiles by in vivo infection with the same clinical isolate of enterovirus 71.
        J Virol. 2014; 88: 12485-12499https://doi.org/10.1128/jvi.00692-14
        • Maedler K
        • Sergeev P
        • Ris F
        • et al.
        Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets.
        J Clin Invest. 2002; 110: 851-860https://doi.org/10.1172/jci15318
        • Zheng X
        • Zheng X
        • Wang X
        • et al.
        Acute hypoxia induces apoptosis of pancreatic β-cell by activation of the unfolded protein response and upregulation of CHOP.
        Cell Death Dis. 2012; 3 (-e322): e322https://doi.org/10.1038/cddis.2012.66
        • Linnemann AK
        • Davis DB.
        Glucagon-like peptide-1 and cholecystokinin production and signaling in the pancreatic islet as an adaptive response to obesity.
        J Diabetes Invest. 2016; 7: 44-49https://doi.org/10.1111/jdi.12465