Advertisement

Importance of multiple endocrine cell types in islet organoids for type 1 diabetes treatment

  • Emma S. Heaton
    Affiliations
    Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, New York
    Search for articles by this author
  • Sha Jin
    Correspondence
    Reprint requests: Professor Sha Jin, State University of New York at Binghamton: Binghamton University, NY 13902, United States.
    Affiliations
    Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, New York

    Center of Biomanufacturing for Regenerative Medicine, State University of New York at Binghamton, Binghamton, New York
    Search for articles by this author
      Almost 50 years ago, scientists developed the bi-hormonal abnormality hypothesis, stating that diabetes is not caused merely by the impaired insulin signaling. Instead, the presence of inappropriate level of glucagon is a prerequisite for the development of type 1 diabetes (T1D). It is widely understood that the hormones insulin and glucagon, secreted by healthy β and α cells respectively, operate in a negative feedback loop to maintain the body's blood sugar levels. Despite this fact, traditional T1D treatments rely solely on exogenous insulin injections. Furthermore, research on cell-based therapies and stem-cell derived tissues tends to focus on the replacement of β cells alone. In vivo, the pancreas is made up of 4 major endocrine cell types, that is, insulin-producing β cells, glucagon-producing α cells, somatostatin-producing δ cells, and pancreatic polypeptide-producing γ cells. These distinct cell types are involved synergistically in regulating islet functions. Therefore, it is necessary to produce a pancreatic islet organoid in vitro consisting of all these cell types that adequately replaces the function of the native islets. In this review, we describe the unique function of each pancreatic endocrine cell type and their interactions contributing to the maintenance of normoglycemia. Furthermore, we detail current sources of whole islets and techniques for their long-term expansion and culture. In addition, we highlight a vast potential of the pancreatic islet organoids for transplantation and diabetes research along with updated new approaches for successful transplantation using stem cell-derived islet organoids.

      Abbreviations:

      DMSO (dimethyl sulfoxide), GABA (γ-aminobutyric acid), GCGR (glucagon receptor), GLP-1 (glucagon-like peptide-1), hAECs (human amniotic epithelial cells), HBSS (Hanks’ Balanced Salt Solution), hESCs (human embryonic stem cells), HLA (human leukocyte antigen), HUVECs (human umbilical vein endothelial cells), IFN-γ (interferon-γ), iPSCs (induced pluripotent stem cells), ILCs (islet-like clusters), LepR (leptin receptor), MAFA (V-maf musculoaponeurotic fibrosarcoma oncogene homolog A), NGN3 (Neurogenin-3), PDX1 (Pancreas/duodenum homeobox protein 1), STZ (streptozotocin)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • National Diabetes Statistics Report. Centers for Disease Control and Prevention. February 15, 2022
        • Diabetes. World Health Organization. 2021
        • Dolezalova N
        • Gruszczyk A
        • Barkan K
        • et al.
        Accelerating cryoprotectant diffusion kinetics improves cryopreservation of pancreatic islets.
        Sci Rep. 2021; 11: 10418
        • Unger RH
        • Orci L.
        The essential role of glucagon in the pathogenesis of diabetes mellitus.
        Lancet. 1975; 1: 14-16
        • Burcelin R
        • Knauf C
        • Cani PD.
        Pancreatic alpha-cell dysfunction in diabetes.
        Diabetes Metab. 2008; 34: S49-S55
        • Ishihara H
        • Maechler P
        • Gjinovci A
        • Herrera PL
        • Wollheim CB.
        Islet beta-cell secretion determines glucagon release from neighbouring alpha-cells.
        Nat Cell Biol. 2003; 5: 330-335
        • Rorsman P
        • Braun M.
        Regulation of insulin secretion in human pancreatic islets.
        Annu Rev Physiol. 2013; 75: 155-179
        • Cryer PE
        • Davis SN
        • Shamoon H.
        Hypoglycemia in diabetes.
        Diabetes Care. 2003; 26: 1902-1912
        • Yatabe T
        • Yamazaki R
        • Kitagawa H
        • et al.
        The evaluation of the ability of closed-loop glycemic control device to maintain the blood glucose concentration in intensive care unit patients.
        Crit Care Med. 2011; 39: 575-578
        • Lee YH
        • Wang MY
        • Yu XX
        • Unger RH.
        Glucagon is the key factor in the development of diabetes.
        Diabetologia. 2016; 59: 1372-1375
        • Punch JD
        • Hayes DH
        • LaPorte FB
        • McBride V
        • Seely MS.
        Organ donation and utilization in the United States, 1996-2005.
        Am J Transplant. 2007; 7: 1327-1338
        • Bellin MD
        • Dunn TB.
        Transplant strategies for type 1 diabetes: whole pancreas, islet and porcine beta cell therapies.
        Diabetologia. 2020; 63: 2049-2056
        • Jiang L
        • Shen Y
        • Liu Y
        • Zhang L
        • Jiang W.
        Making human pancreatic islet organoids: Progresses on the cell origins, biomaterials and three-dimensional technologies.
        Theranostics. 2022; 12: 1537-1556
        • Gallagher S.
        Beta cells : functions, pathology, and research. Cell biology research progress.
        Nova Science Publishers, New York2011: 1 (online resource)
        • Brissova M
        • Fowler MJ
        • Nicholson WE
        • et al.
        Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy.
        J Histochem Cytochem. 2005; 53: 1087-1097
        • Pisania A
        • Weir GC
        • O'Neil JJ
        • et al.
        Quantitative analysis of cell composition and purity of human pancreatic islet preparations.
        Lab Invest. 2010; 90: 1661-1675
        • Steiner DJ
        • Kim A
        • Miller K
        • Hara M.
        Pancreatic islet plasticity: interspecies comparison of islet architecture and composition.
        Islets. 2010; 2: 135-145
        • Cabrera O
        • Berman DM
        • Kenyon NS
        • Ricordi C
        • Berggren PO
        • Caicedo A.
        The unique cytoarchitecture of human pancreatic islets has implications for islet cell function.
        Proc Natl Acad Sci U S A. 2006; 103: 2334-2339
        • Marchetti P
        • Bugliani M
        • De Tata V
        • Suleiman M
        • Marselli L.
        Pancreatic Beta Cell Identity in Humans and the Role of Type 2 Diabetes.
        Front Cell Dev Biol. 2017; 5: 55
        • Fridlyand LE
        • Philipson LH.
        Glucose sensing in the pancreatic beta cell: a computational systems analysis.
        Theor Biol Med Model. 2010; 7: 15
        • De Vos A
        • Heimberg H
        • Quartier E
        • et al.
        Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression.
        J Clin Invest. 1995; 96: 2489-2495
        • Petersen MC
        • Shulman GI.
        Mechanisms of Insulin Action and Insulin Resistance.
        Physiol Rev. 2018; 98: 2133-2223
      1. De Meyts P. The Insulin Receptor and Its Signal Transduction Network. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, et al., eds. South Dartmouth (MA): Endotext; 2000.

        • Piper K
        • Brickwood S
        • Turnpenny LW
        • et al.
        Beta cell differentiation during early human pancreas development.
        J Endocrinol. 2004; 181: 11-23
        • Zhu Y
        • Liu Q
        • Zhou Z
        • Ikeda Y.
        PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration.
        Stem Cell Res Ther. 2017; 8: 240
        • Murtaugh LC.
        Pancreas and beta-cell development: from the actual to the possible.
        Development. 2007; 134: 427-438
        • Castaing M
        • Duvillie B
        • Quemeneur E
        • Basmaciogullari A
        • Scharfmann R.
        Ex vivo analysis of acinar and endocrine cell development in the human embryonic pancreas.
        Dev Dyn. 2005; 234: 339-345
        • Eliasson L
        • Esguerra JL.
        Role of non-coding RNAs in pancreatic beta-cell development and physiology.
        Acta Physiol (Oxf). 2014; 211: 273-284
        • Al-Masri M
        • Krishnamurthy M
        • Li J
        • et al.
        Effect of forkhead box O1 (FOXO1) on beta cell development in the human fetal pancreas.
        Diabetologia. 2010; 53: 699-711
        • Stoffers DA.
        The development of beta-cell mass: recent progress and potential role of GLP-1.
        Horm Metab Res. 2004; 36: 811-821
        • Shao S
        • Fang Z
        • Yu X
        • Zhang M
        Transcription factors involved in glucose-stimulated insulin secretion of pancreatic beta cells.
        Biochem Biophys Res Commun. 2009; 384: 401-404
        • Fujimoto K
        • Polonsky KS.
        Pdx1 and other factors that regulate pancreatic beta-cell survival.
        Diabetes Obes Metab. 2009; 11: 30-37
        • Gao T
        • McKenna B
        • Li C
        • et al.
        Pdx1 maintains beta cell identity and function by repressing an alpha cell program.
        Cell Metab. 2014; 19: 259-271
        • Baeyens L
        • Bonne S
        • German MS
        • Ravassard P
        • Heimberg H
        • Bouwens L.
        Ngn3 expression during postnatal in vitro beta cell neogenesis induced by the JAK/STAT pathway.
        Cell Death Differ. 2006; 13: 1892-1899
        • Aguayo-Mazzucato C
        • Koh A
        • El Khattabi I
        • et al.
        Mafa expression enhances glucose-responsive insulin secretion in neonatal rat beta cells.
        Diabetologia. 2011; 54: 583-593
        • Kaneto H
        • Matsuoka TA
        • Kawashima S
        • et al.
        Role of MafA in pancreatic beta-cells.
        Adv Drug Deliv Rev. 2009; 61: 489-496
        • Wang H
        • Brun T
        • Kataoka K
        • Sharma AJ
        • Wollheim CB.
        MAFA controls genes implicated in insulin biosynthesis and secretion.
        Diabetologia. 2007; 50: 348-358
        • Nishimura W
        • Takahashi S
        • Yasuda K.
        MafA is critical for maintenance of the mature beta cell phenotype in mice.
        Diabetologia. 2015; 58: 566-574
        • Hang Y
        • Stein R.
        MafA and MafB activity in pancreatic beta cells.
        Trends Endocrinol Metab. 2011; 22: 364-373
        • Da Silva Xavier G
        The Cells of the Islets of Langerhans.
        J Clin Med. 2018; 7
        • Briant L
        • Salehi A
        • Vergari E
        • Zhang Q
        • Rorsman P.
        Glucagon secretion from pancreatic alpha-cells.
        Ups J Med Sci. 2016; 121: 113-119
        • Walker JN
        • Ramracheya R
        • Zhang Q
        • Johnson PR
        • Braun M
        • Rorsman P.
        Regulation of glucagon secretion by glucose: paracrine, intrinsic or both?.
        Diabetes Obes Metab. 2011; 13: 95-105
        • Rorsman P
        • Huising M.
        The somatostatin-secreting pancreatic delta-cell in health and disease.
        Nat Rev Endocrinol. 2018; 14: 404-414
        • O'Toole TJ
        • Sharma S.
        Physiology, Somatostatin.
        StatPearls, Treasure Island (FL)2022
        • Hauge-Evans AC
        • King AJ
        • Carmignac D
        • et al.
        Somatostatin secreted by islet delta-cells fulfills multiple roles as a paracrine regulator of islet function.
        Diabetes. 2009; 58: 403-411
        • Gerich JE.
        Somatostatin and diabetes.
        Am J Med. 1981; 70: 619-626
        • Lonovics J
        • Devitt P
        • Watson LC
        • Rayford PL
        • Thompson JC.
        Pancreatic polypeptide. A review.
        Arch Surg. 1981; 116: 1256-1264
        • Kojima S
        • Ueno N
        • Asakawa A
        • et al.
        A role for pancreatic polypeptide in feeding and body weight regulation.
        Peptides. 2007; 28: 459-463
        • Hazelwood RL.
        The pancreatic polypeptide (PP-fold) family: gastrointestinal, vascular, and feeding behavioral implications.
        Proc Soc Exp Biol Med. 1993; 202: 44-63
        • Katsuura G
        • Asakawa A
        • Inui A.
        Roles of pancreatic polypeptide in regulation of food intake.
        Peptides. 2002; 23: 323-329
        • Maxwell JE
        • O'Dorisio TM
        • Bellizzi AM
        • Howe JR.
        Elevated pancreatic polypeptide levels in pancreatic neuroendocrine tumors and diabetes mellitus: causation or association?.
        Pancreas. 2014; 43: 651-656
        • Sakata N
        • Yoshimatsu G
        • Kodama S.
        Development and Characteristics of Pancreatic Epsilon Cells.
        Int J Mol Sci. 2019; 20: 1867https://doi.org/10.3390/ijms20081867
        • Balboa D
        • Barsby T
        • Lithovius V
        • et al.
        Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells.
        Nat Biotechnol. 2022; https://doi.org/10.1038/s41587-022-01219-z
        • Pipeleers D
        • Ling Z.
        Pancreatic beta cells in insulin-dependent diabetes.
        Diabetes Metab Rev. 1992; 8: 209-227
        • Lee Y
        • Wang MY
        • Du XQ
        • Charron MJ
        • Unger RH.
        Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice.
        Diabetes. 2011; 60: 391-397
        • Lee Y
        • Berglund ED
        • Wang MY
        • Fu X
        • Yu X
        • Charron MJ
        • et al.
        Metabolic manifestations of insulin deficiency do not occur without glucagon action.
        Proc Natl Acad Sci U S A. 2012; 109: 14972-14976
        • Okamoto H
        • Kim J
        • Aglione J
        • et al.
        Glucagon receptor blockade with a human antibody normalizes blood glucose in diabetic mice and monkeys.
        Endocrinology. 2015; 156: 2781-2794
        • Yan H
        • Gu W
        • Yang J
        • et al.
        Fully human monoclonal antibodies antagonizing the glucagon receptor improve glucose homeostasis in mice and monkeys.
        J Pharmacol Exp Ther. 2009; 329: 102-111
        • Gu W
        • Yan H
        • Winters KA
        • et al.
        Long-term inhibition of the glucagon receptor with a monoclonal antibody in mice causes sustained improvement in glycemic control, with reversible alpha-cell hyperplasia and hyperglucagonemia.
        J Pharmacol Exp Ther. 2009; 331: 871-881
        • Okamoto H
        • Cavino K
        • Na E
        • et al.
        Glucagon receptor inhibition normalizes blood glucose in severe insulin-resistant mice.
        Proc Natl Acad Sci U S A. 2017; 114: 2753-2758
        • Takatani T
        • Shirakawa J
        • Shibue K
        • et al.
        Insulin receptor substrate 1, but not IRS2, plays a dominant role in regulating pancreatic alpha cell function in mice.
        J Biol Chem. 2021; 296100646
        • Kawamori D
        • Kurpad AJ
        • Hu J
        • et al.
        Insulin signaling in alpha cells modulates glucagon secretion in vivo.
        Cell Metab. 2009; 9: 350-361
        • Pettus J
        • Reeds D
        • Cavaiola TS
        • et al.
        Effect of a glucagon receptor antibody (REMD-477) in type 1 diabetes: A randomized controlled trial.
        Diabetes Obes Metab. 2018; 20: 1302-1305
        • Goke B.
        Islet cell function: alpha and beta cells–partners towards normoglycaemia.
        Int J Clin Pract Suppl. 2008; 62: 2-7
        • Hartig SM
        • Cox AR.
        Paracrine signaling in islet function and survival.
        J Mol Med (Berl). 2020; 98: 451-467
        • Leung YM
        • Ahmed I
        • Sheu L
        • et al.
        Insulin regulates islet alpha-cell function by reducing KATP channel sensitivity to adenosine 5′-triphosphate inhibition.
        Endocrinology. 2006; 147: 2155-2162
        • Wang W
        • Jin S
        • Ye K.
        Development of islet organoids from H9 human embryonic stem cells in biomimetic 3D scaffolds.
        Stem Cells Dev. 2017; 26: 394-404
        • Bi H
        • Ye K
        • Jin S.
        Proteomic analysis of decellularized pancreatic matrix identifies collagen V as a critical regulator for islet organogenesis from human pluripotent stem cells.
        Biomaterials. 2020; 233119673
        • Vergari E
        • Knudsen JG
        • Ramracheya R
        • et al.
        Insulin inhibits glucagon release by SGLT2-induced stimulation of somatostatin secretion.
        Nat Commun. 2019; 10: 139
        • Moede T
        • Leibiger IB
        • Berggren PO.
        Alpha cell regulation of beta cell function.
        Diabetologia. 2020; 63: 2064-2075
        • Olsen HL
        • Theander S
        • Bokvist K
        • Buschard K
        • Wollheim CB
        • Gromada J.
        Glucose stimulates glucagon release in single rat alpha-cells by mechanisms that mirror the stimulus-secretion coupling in beta-cells.
        Endocrinology. 2005; 146: 4861-4870
        • Carlessi R
        • Chen Y
        • Rowlands J
        • et al.
        GLP-1 receptor signalling promotes beta-cell glucose metabolism via mTOR-dependent HIF-1alpha activation.
        Sci Rep. 2017; 7: 2661
        • Kim W
        • Fiori JL
        • Shin YK
        • et al.
        Pancreatic polypeptide inhibits somatostatin secretion.
        FEBS Lett. 2014; 588: 3233-3239
        • Aragon F
        • Karaca M
        • Novials A
        • Maldonado R
        • Maechler P
        • Rubi B
        Pancreatic polypeptide regulates glucagon release through PPYR1 receptors expressed in mouse and human alpha-cells.
        Biochim Biophys Acta. 2015; 1850: 343-351
        • Squifflet JP
        • Gruessner RW
        • Sutherland DE.
        The history of pancreas transplantation: past, present and future.
        Acta Chir Belg. 2008; 108: 367-378
        • Casanova D
        en nombre de Grupo Espanol de Trasplante de P. Pancreas transplantation: 50 years of experience.
        Cir Esp. 2017; 95: 254-260
        • Shapiro AM
        • Ricordi C
        • Hering BJ
        • et al.
        International trial of the Edmonton protocol for islet transplantation.
        N Engl J Med. 2006; 355: 1318-1330
        • Shapiro AM
        • Pokrywczynska M
        • Ricordi C.
        Clinical pancreatic islet transplantation.
        Nat Rev Endocrinol. 2017; 13: 268-277
        • Medvedev SP
        • Shevchenko AI
        • Zakian SM.
        Induced pluripotent stem cells: problems and advantages when applying them in regenerative medicine.
        Acta Naturae. 2010; 2: 18-28
        • Yefroyev DA
        • Jin S.
        Induced pluripotent stem cells for treatment of Alzheimer's and Parkinson's diseases.
        Biomedicines. 2022; 10
        • Bi H
        • Karanth SS
        • Ye K
        • Stein R
        • Jin S.
        Decellularized tissue matrix enhances self-Assembly of islet organoids from pluripotent stem cell differentiation.
        ACS Biomater Sci Eng. 2020; 6: 4155-4165
        • Karanth SS
        • Sun S
        • Bi H
        • Ye K
        • Jin S
        Angiopoietins stimulate pancreatic islet development from stem cells.
        Sci Rep. 2021; 11: 13558
        • Marei HE
        • Althani A
        • Lashen S
        • Cenciarelli C
        • Hasan A.
        Genetically unmatched human iPSC and ESC exhibit equivalent gene expression and neuronal differentiation potential.
        Sci Rep. 2017; 7: 17504
        • Wen Y
        • Jin S.
        Production of neural stem cells from human pluripotent stem cells.
        J Biotechnol. 2014; 188: 122-129
        • Glicksman MA.
        Induced Pluripotent Stem Cells: The Most Versatile Source for Stem Cell Therapy.
        Clin Ther. 2018; 40: 1060-1065
        • Tanaka A
        • Watanabe A
        • Nakano Y
        • Matsumoto M
        • Okazaki Y
        • Miyajima A.
        Reversible expansion of pancreatic islet progenitors derived from human induced pluripotent stem cells.
        Genes Cells. 2020; 25: 302-311
        • Yabe SG
        • Fukuda S
        • Nishida J
        • Takeda F
        • Nashiro K
        • Okochi H.
        Induction of functional islet-like cells from human iPS cells by suspension culture.
        Regen Ther. 2019; 10: 69-76
        • Pagliuca FW
        • Millman JR
        • Gurtler M
        • et al.
        Generation of functional human pancreatic beta cells in vitro.
        Cell. 2014; 159: 428-439
        • Velazco-Cruz L
        • Song J
        • Maxwell KG
        • et al.
        Acquisition of dynamic function in human stem cell-derived beta cells.
        Stem Cell Reports. 2019; 12: 351-365
        • Mahaddalkar PU
        • Scheibner K
        • Pfluger S
        • et al.
        Generation of pancreatic beta cells from CD177(+) anterior definitive endoderm.
        Nat Biotechnol. 2020; 38: 1061-1072
        • Huang H
        • Bader TN
        • Jin S
        Signaling molecules regulating pancreatic endocrine development from pluripotent stem cell differentiation.
        Int J Mol Sci. 2020; 21
        • Russ HA
        • Parent AV
        • Ringler JJ
        • et al.
        Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro.
        EMBO J. 2015; 34: 1759-1772
        • Vegas AJ
        • Veiseh O
        • Gurtler M
        • et al.
        Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice.
        Nat Med. 2016; 22: 306-311
        • Basford CL
        • Prentice KJ
        • Hardy AB
        • et al.
        The functional and molecular characterisation of human embryonic stem cell-derived insulin-positive cells compared with adult pancreatic beta cells.
        Diabetologia. 2012; 55: 358-371
        • Assady S
        • Maor G
        • Amit M
        • Itskovitz-Eldor J
        • Skorecki KL
        • Tzukerman M.
        Insulin production by human embryonic stem cells.
        Diabetes. 2001; 50: 1691-1697
        • Soria B
        • Roche E
        • Berna G
        • Leon-Quinto T
        • Reig JA
        • Martin F
        Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice.
        Diabetes. 2000; 49: 157-162
        • Bruin JE
        • Rezania A
        • Xu J
        • et al.
        Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice.
        Diabetologia. 2013; 56: 1987-1998
        • Rezania A
        • Bruin JE
        • Riedel MJ
        • Mojibian M
        • Asadi A
        • Xu J
        • et al.
        Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice.
        Diabetes. 2012; 61: 2016-2029
        • D'Amour KA
        • Bang AG
        • Eliazer S
        • et al.
        Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells.
        Nat Biotechnol. 2006; 24: 1392-1401
        • Lumelsky N
        • Blondel O
        • Laeng P
        • Velasco I
        • Ravin R
        • McKay R.
        Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets.
        Science. 2001; 292: 1389-1394
        • Jiang J
        • Au M
        • Lu K
        • et al.
        Generation of insulin-producing islet-like clusters from human embryonic stem cells.
        Stem Cells. 2007; 25: 1940-1953
        • Rezania A
        • Bruin JE
        • Xu J
        • et al.
        Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo.
        Stem Cells. 2013; 31: 2432-2442
        • Tao T
        • Wang Y
        • Chen W
        • et al.
        Engineering human islet organoids from iPSCs using an organ-on-chip platform.
        Lab Chip. 2019; 19: 948-958
        • Andersson A
        • Borg H
        • Groth CG
        • et al.
        Survival of isolated human islets of Langerhans maintained in tissue culture.
        J Clin Invest. 1976; 57: 1295-1301
        • Broutier L
        • Andersson-Rolf A
        • Hindley CJ
        • et al.
        Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation.
        Nat Protoc. 2016; 11: 1724-1743
        • Cornelius JG
        • Tchernev V
        • Kao KJ
        • Peck AB.
        In vitro-generation of islets in long-term cultures of pluripotent stem cells from adult mouse pancreas.
        Horm Metab Res. 1997; 29: 271-277
        • Hyon SH
        • Kim DH.
        Long-term preservation of rat pancreatic islets under physiological conditions.
        J Biotechnol. 2001; 85: 241-246
        • Kawasaki F
        • Matsuda M
        • Kanda Y
        • Inoue H
        • Kaku K.
        Structural and functional analysis of pancreatic islets preserved by pioglitazone in db/db mice.
        Am J Physiol Endocrinol Metab. 2005; 288: E510-E518
        • Ferguson J
        • Allsopp RH
        • Taylor RM
        • Johnston ID.
        Isolation and long term preservation of pancreatic islets from mouse, rat and guinea pig.
        Diabetologia. 1976; 12: 115-121
        • Nakagawara G
        • Kobayashi T
        • Kimura T
        • Yamaguchi A
        • Shimada H.
        Preservation of pancreatic islets in rodent models.
        Pancreas. 1998; 16: 392-395
        • Andersson A.
        Isolated mouse pancreatic islets in culture: effects of serum and different culture media on the insulin production of the islets.
        Diabetologia. 1978; 14: 397-404
        • Kaiser N
        • Corcos AP
        • Tur-Sinai A
        • Ariav Y
        • Cerasi E.
        Monolayer culture of adult rat pancreatic islets on extracellular matrix: long term maintenance of differentiated B-cell function.
        Endocrinology. 1988; 123: 834-840
        • Weber CJ
        • Hardy MA
        • Pi-Sunyer F
        • Zimmerman E
        • Reemtsma K.
        Tissue culture preservation and intramuscular transplantation of pancreatic islets.
        Surgery. 1978; 84: 166-174
        • Foreman J
        • Moriya H
        • Taylor MJ.
        Effect of cooling rate and its interaction with pre-freeze and post-thaw tissue culture on the in vitro and in vivo function of cryopreserved pancreatic islets.
        Transpl Int. 1993; 6: 191-200
        • Nakayama-Iwatsuki K
        • Hirabayashi M
        • Hochi S.
        Fabrication of functional rat pseudo-islets after cryopreservation of pancreatic islets or dispersed islet cells.
        J Tissue Eng Regen Med. 2021; 15: 686-696
        • Rush BT
        • Fraga DW
        • Kotb MY
        • et al.
        Preservation of human pancreatic islet in vivo function after 6-month culture in serum-free media.
        Transplantation. 2004; 77: 1147-1154
        • Nuttall PA
        • Luther PD
        • Stott EJ.
        Viral contamination of bovine foetal serum and cell cultures.
        Nature. 1977; 266: 835-837
        • Daoud J
        • Rosenberg L
        • Tabrizian M.
        Pancreatic islet culture and preservation strategies: advances, challenges, and future outlook.
        Cell Transplant. 2010; 19: 1523-1535
        • Patel SN
        • Ishahak M
        • Chaimov D
        • et al.
        Organoid microphysiological system preserves pancreatic islet function within 3D matrix.
        Sci Adv. 2021; 7
        • Clayton H
        • Turner J
        • Swift S
        • James R
        • Bell P
        Supplementation of islet culture medium with insulin may have a beneficial effect on islet secretory function.
        Pancreas. 2001; 22: 72-74
        • Yamamoto T
        • Mita A
        • Ricordi C
        • et al.
        Prolactin supplementation to culture medium improves beta-cell survival.
        Transplantation. 2010; 89: 1328-1335
        • Ogawa A
        • Terada S
        • Kanayama T
        • et al.
        Improvement of islet culture with sericin.
        J Biosci Bioeng. 2004; 98: 217-219
        • Lee RH
        • Carter J
        • Szot GL
        • Posselt A
        • Stock P.
        Human albumin preserves islet mass and function better than whole serum during pretransplantation islet culture.
        Transplant Proc. 2008; 40: 384-386
        • Clark SA
        • Chick WL.
        Islet cell culture in defined serum-free medium.
        Endocrinology. 1990; 126: 1895-1903
        • Kneteman NM
        • Alderson D
        • Scharp DW
        • Lacy PE.
        Long-term cryogenic storage of purified adult human islets of Langerhans.
        Diabetes. 1989; 38: 386-396
        • Awan M
        • Buriak I
        • Fleck R
        • et al.
        Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity?.
        Regen Med. 2020; 15: 1463-1491
        • Gerich JE.
        Is reduced first-phase insulin release the earliest detectable abnormality in individuals destined to develop type 2 diabetes?.
        Diabetes. 2002; 51: S117-S121
        • Lakey JR
        • Anderson TJ
        • Rajotte RV.
        Novel approaches to cryopreservation of human pancreatic islets.
        Transplantation. 2001; 72: 1005-1011
        • Wang S
        • Yuan X
        • Zhou J
        • Jin J
        • Zuo Q
        • Li B
        Comparison of the effects of three cryoprotectants on the cryopreservation of mouse subcutaneous tissue under different conditions.
        Exp Ther Med. 2020; 20: 3285-3289
        • Kenmochi T
        • Asano T
        • Maruyama M
        • et al.
        Cryopreservation of human pancreatic islets from non-heart-beating donors using hydroxyethyl starch and dimethyl sulfoxide as cryoprotectants.
        Cell Transplant. 2008; 17: 61-67
        • Warnock GL
        • Kneteman NM
        • Ryan E
        • Seelis RE
        • Rabinovitch A
        • Rajotte RV.
        Normoglycaemia after transplantation of freshly isolated and cryopreserved pancreatic islets in type 1 (insulin-dependent) diabetes mellitus.
        Diabetologia. 1991; 34: 55-58
        • Akolpoglu MB
        • Inceoglu Y
        • Bozuyuk U
        • et al.
        Recent advances in the design of implantable insulin secreting heterocellular islet organoids.
        Biomaterials. 2021; 269120627
        • Lebreton F
        • Lavallard V
        • Bellofatto K
        • et al.
        Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes.
        Nat Commun. 2019; 10: 4491
        • Soltanian A
        • Ghezelayagh Z
        • Mazidi Z
        • et al.
        Generation of functional human pancreatic organoids by transplants of embryonic stem cell derivatives in a 3D-printed tissue trapper.
        J Cell Physiol. 2019; 234: 9564-9576
        • Wassmer CH
        • Lebreton F
        • Bellofatto K
        • Bosco D
        • Berney T
        • Berishvili E.
        Generation of insulin-secreting organoids: a step toward engineering and transplanting the bioartificial pancreas.
        Transpl Int. 2020; 33: 1577-1588
        • Wang D
        • Wang J
        • Bai L
        • et al.
        Long-term expansion of pancreatic islet organoids from resident procr(+) progenitors.
        Cell. 2020; 180: 1198-1211.e19
        • Nalbach L
        • Roma LP
        • Schmitt BM
        • et al.
        Improvement of islet transplantation by the fusion of islet cells with functional blood vessels.
        EMBO Mol Med. 2021; 13: e12616
        • Tao T
        • Deng P
        • Wang Y
        • et al.
        Microengineered multi-organoid system from hiPSCs to recapitulate human liver-islet axis in normal and type 2 diabetes.
        Adv Sci (Weinh). 2022; 9e2103495
        • Bauer S
        • Wennberg Huldt C
        • Kanebratt KP
        • et al.
        Functional coupling of human pancreatic islets and liver spheroids on-a-chip: towards a novel human ex vivo type 2 diabetes model.
        Sci Rep. 2017; 7: 14620
        • Kawser Hossain M
        • Abdal Dayem A
        • Han J
        • et al.
        Recent advances in disease modeling and drug discovery for diabetes mellitus using induced pluripotent stem cells.
        Int J Mol Sci. 2016; 17: 256
        • Balboa D
        • Iworima DG
        • Kieffer TJ.
        Human pluripotent stem cells to model islet defects in diabetes.
        Front Endocrinol (Lausanne). 2021; 12642152
        • Hindley CJ
        • Cordero-Espinoza L
        • Huch M.
        Organoids from adult liver and pancreas: stem cell biology and biomedical utility.
        Dev Biol. 2016; 420: 251-261
        • Tsakmaki A
        • Fonseca Pedro P
        • Bewick GA.
        Diabetes through a 3D lens: organoid models.
        Diabetologia. 2020; 63: 1093-1102
        • Zhang X
        • Ma Z
        • Song E
        • Xu T.
        Islet organoid as a promising model for diabetes.
        Protein Cell. 2021; 13: 239-257
        • Gupta SK
        • Wesolowska-Andersen A
        • et al.
        NKX6.1 induced pluripotent stem cell reporter lines for isolation and analysis of functionally relevant neuronal and pancreas populations.
        Stem Cell Res. 2018; 29: 220-231
        • Lee Y
        • Choi HY
        • Kwon A
        • et al.
        Generation of a PDX1-EGFP reporter human induced pluripotent stem cell line, KSCBi005-A-3, using the CRISPR/Cas9 system.
        Stem Cell Res. 2019; 41101632
        • Lee NS
        • Rohan JG
        • Zitting M
        • et al.
        A novel dual-color reporter for identifying insulin-producing beta-cells and classifying heterogeneity of insulinoma cell lines.
        PLoS One. 2012; 7: e35521
        • Micallef SJ
        • Li X
        • Schiesser JV
        • et al.
        INS(GFP/w) human embryonic stem cells facilitate isolation of in vitro derived insulin-producing cells.
        Diabetologia. 2012; 55: 694-706
        • Leon-Quinto T
        • Jones J
        • Skoudy A
        • Burcin M
        • Soria B.
        In vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells.
        Diabetologia. 2004; 47: 1442-1451
        • Wu Y
        • Chang T
        • Long Y
        • Huang H
        • Kandeel F
        • Yee JK.
        Using Gene Editing to Establish a Safeguard System for Pluripotent Stem-Cell-Based Therapies.
        iScience. 2019; 22: 409-422
        • An D
        • Wang LH
        • Ernst AU
        • et al.
        An atmosphere-breathing refillable Biphasic Device for cell replacement therapy.
        Adv Mater. 2019; 31e1905135
        • Wang LH
        • Ernst AU
        • Flanders JA
        • et al.
        An inverse-breathing encapsulation system for cell delivery.
        Sci Adv. 2021; 7
        • Takahashi Y
        • Sekine K
        • Kin T
        • Takebe T
        • Taniguchi H
        Self-condensation culture enables vascularization of tissue fragments for efficient therapeutic transplantation.
        Cell Rep. 2018; 23: 1620-1629
        • Wassmer CH
        • Lebreton F
        • Bellofatto K
        • et al.
        Bio-Engineering of Pre-Vascularized Islet Organoids for the Treatment of Type 1 Diabetes.
        Transpl Int. 2021; 35: 10214
        • Wang LH
        • Ernst AU
        • An D
        • et al.
        A bioinspired scaffold for rapid oxygenation of cell encapsulation systems.
        Nat Commun. 2021; 12: 5846
        • Wang X
        • Brown NK
        • Wang B
        • et al.
        Local immunomodulatory strategies to prevent Allo-Rejection in transplantation of insulin-producing cells.
        Adv Sci (Weinh). 2021; 8e2003708
        • Razavi M
        • Ren T
        • Zheng F
        • et al.
        Facilitating islet transplantation using a three-step approach with mesenchymal stem cells, encapsulation, and pulsed focused ultrasound.
        Stem Cell Res Ther. 2020; 11: 405
        • Bochenek MA
        • Veiseh O
        • Vegas AJ
        • et al.
        Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques.
        Nat Biomed Eng. 2018; 2: 810-821
        • Huang X
        • Moore DJ
        • Ketchum RJ
        • et al.
        Resolving the conundrum of islet transplantation by linking metabolic dysregulation, inflammation, and immune regulation.
        Endocr Rev. 2008; 29: 603-630
        • Liu W
        • Flanders JA
        • Wang LH
        • et al.
        A safe, fibrosis-mitigating, and scalable Encapsulation Device supports long-term function of insulin-producing cells.
        Small. 2022; 18e2104899
        • An D
        • Chiu A
        • Flanders JA
        • et al.
        Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes.
        Proc Natl Acad Sci U S A. 2018; 115: E263-EE72
        • Alagpulinsa DA
        • Cao JJL
        • Driscoll RK
        • et al.
        Alginate-microencapsulation of human stem cell-derived beta cells with CXCL12 prolongs their survival and function in immunocompetent mice without systemic immunosuppression.
        Am J Transplant. 2019; 19: 1930-1940
        • Boettler T
        • Schneider D
        • Cheng Y
        • et al.
        Pancreatic tissue transplanted in theraCyte Encapsulation Devices is protected and prevents hyperglycemia in a mouse model of immune-mediated diabetes.
        Cell Transplant. 2016; 25: 609-614
        • Yoshihara E
        • O'Connor C
        • Gasser E
        • et al.
        Immune-evasive human islet-like organoids ameliorate diabetes.
        Nature. 2020; 586: 606-611
        • Castro-Gutierrez R
        • Alkanani A
        • Mathews CE
        • Michels A
        • Russ HA.
        Protecting stem cell derived pancreatic beta-like cells from diabetogenic T cell recognition.
        Front Endocrinol (Lausanne). 2021; 12707881
        • Koga K
        • Wang B
        • Kaneko S.
        Current status and future perspectives of HLA-edited induced pluripotent stem cells.
        Inflamm Regen. 2020; 40: 23
        • Xu H
        • Wang B
        • Ono M
        • et al.
        Targeted Disruption of HLA Genes via CRISPR-Cas9 Generates iPSCs with enhanced immune compatibility.
        Cell Stem Cell. 2019; 24: 566-578.e7
        • Wuputra K
        • Ku CC
        • Wu DC
        • Lin YC
        • Saito S
        • Yokoyama KK.
        Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells.
        J Exp Clin Cancer Res. 2020; 39: 100