Abstract
Abbreviation:
AF (Atrial fibrillation), AICM (Anthracycline-induced cardiomyopathy), AKT (Protein kinase B), ALR (AIM2-like receptor), AMI (Acute myocardial infarction), ASC (Apoptosis-associated speck-like protein containing a CARD domain), BMDM (Bone marrow-derived macrophages), Ca2+ (Calcium), CaMKIIδ (Ca2+/calmodulin-dependent protein kinase II δ), CAPS (Cryopyrin-associated periodic syndrome), CARD (Carboxy-terminal caspase recruitment domain), CHF (Congestive heart failure), CVB3 (Coxsackievirus B3), DAMPS (Danger-associated molecular patterns), DOX (Doxorubicin), EGFR (Epidermal-grow factor receptor), ER (Endoplasmic reticulum), FDA (Food and Drug Administration), FGFR (Fibroblast grow factor receptor), GDP (Guanosine diphosphate), GSDMD (Gasdermin D), H2S (Hydrogen sulfide), HER2 (Human epidermal growth factor receptor 2), HFpEF (Heart failure with preserved ejection fraction), HFrEF (Heart failure with reduced ejection fraction), ICI (Immune checkpoint inhibitor), IKKβ (Inhibitor for kappa B kinase β), IL-18 (Interleukin-18), IL-1Ra (Recombinant IL-1 receptor antagonist), IL-1RI (Interleukin-1 receptor type I), IL-1β (Interleukin-1β), K+ (Potassium), LDLR (Low-density lipoprotein receptor), LRR (Leucine-rich repeats), LV (Left ventricular), LVEF (Left ventricular ejection fraction), MAPK (Mitogen-activated protein kinase), mtDNA (Mitochondrial DNA), Na2S (Sodium sulfide), NaHS (Sodium hydrosulfide), NEK (NIMA-related kinases proteins), NF-kB (Nuclear factor kappa-light-chain-enhancer of activated B cells), NLR ((NOD)-like receptors), NLRP3 (Nod-like receptor protein 3), NOD (Nucleotide-binding and oligomerization domain), NRTK (Non-receptor tyrosine kinase), NTproBNP (N-terminal-pro hormone B-type natriuretic peptide), PAMPS (Pathogen-associated molecular patterns), PDGFR (Platelet-derived grow factor receptor), PI3K (Phosphoinositide 3 Kinase), PRR (Pattern recognition receptor), PYD (Pyrin domain), RAGE (Receptor for advanced glycation end-products), ROS (Reactive oxygen species), RT (Radiation therapy), RTK (Receptor tyrosine kinases), SGLT2 (Sodium-glucose Cotransporter-2), TK (Tyrosine kinases), TKI (Tyrosine kinase inhibitors), TLR (Toll-like receptors), TXNIP (Thioredoxin-interacting protein), VEGFR (Vascular endothelial growth factor), VO2 (against medical advice)Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Translational ResearchReferences
- Cancer statistics, 2019.CA: A Can J Clin. 2019; 69: 7-34https://doi.org/10.3322/caac.21551
- Cardiotoxicity of Cancer Therapies.Cardiol in Rev. 2019; 27: 230-235https://doi.org/10.1097/CRD.0000000000000239
- Preventing antiblastic drug-related cardiomyopathy: Old and new therapeutic strategies.J Cardiovasc Med. 2016; 17: S64-S75https://doi.org/10.2459/JCM.0000000000000382
- Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia.Nature Rev Cardiol. 2020; 17: 474-502https://doi.org/10.1038/s41569-020-0348-1
- Targeting the NLRP3 inflammasome in cardiovascular diseases.Pharmacol and Therap. 2022; 236108053https://doi.org/10.1016/j.pharmthera.2021.108053
- Independent roles of the priming and the triggering of the NLRP3 inflammasome in the heart.Cardiovasc Res. 2015; 105: 203-212https://doi.org/10.1093/cvr/cvu259
- Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: a position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society.Eur J Heart Fail. 2020; 22: 1945-1960https://doi.org/10.1002/EJHF.1920
- Cardio-oncology: A focus on cardiotoxicity.Euro Cardiol Rev. 2018; 13: 64-69https://doi.org/10.15420/ecr.2017:17:2
- The Evolving Immunotherapy Landscape and the Epidemiology, Diagnosis, and Management of Cardiotoxicity: JACC: CardioOncology Primer.JACC: CardioOncology. 2021; 3: 35-47https://doi.org/10.1016/j.jaccao.2020.11.012
- The Role of Biomarkers in Cardio-Oncology.J Cardiovasc Translational Res. 2020; 13: 431-450https://doi.org/10.1007/s12265-020-10042-3
- Evaluation and management of patients with heart disease and cancer: Cardio-oncology.Mayo Clin Proceedings. 2014; 89: 1287-1306https://doi.org/10.1016/j.mayocp.2014.05.013
- PAMPs and alarmins: all we need to know about danger.J Leukocyte Biol. 2006; 81: 1-5https://doi.org/10.1189/jlb.0306164
- Inflammasomes: Mechanism of assembly, regulation and signaling.Nature Rev Immunol. 2016; 16: 407-420https://doi.org/10.1038/NRI.2016.58
- NLRP3 Inflammasome in Acute Myocardial Infarction.J Cardiovasc Pharmacol. 2019; 74: 175-187https://doi.org/10.1097/FJC.0000000000000717
- The Inflammasome in Myocardial Injury and Cardiac Remodeling.Antioxidants & Redox Sign. 2015; 22: 1146-1161https://doi.org/10.1089/ars.2014.5989
- Mechanism of NLRP3 inflammasome activation.Ann N Y Acad Sci. 2014; 1319: 82-95https://doi.org/10.1111/nyas.12458
- Role of NLRP3 (cryopyrin) in acute myocardial infarction.Cardiovasc Res. 2013; 99: 225-226https://doi.org/10.1093/cvr/cvt123
- The NLRP3 and pyrin inflammasomes: Implications in the pathophysiology of autoinflammatory diseases.Frontiers in Immunol. 2017; 8: 43https://doi.org/10.3389/fimmu.2017.00043
- The Sterile Inflammatory Response.Ann Rev of Immunol. 2010; 28: 321-342https://doi.org/10.1146/annurev-immunol-030409-101311
- Interleukin-18 and interleukin-1β: Two cytokine substrates for ICE (caspase-1).J Clin Immunol. 1999; 19: 1-11https://doi.org/10.1023/A:1020506300324
- Pyroptosis: Host cell death and inflammation.Nature Rev Microbiol. 2009; 7: 99-109https://doi.org/10.1038/nrmicro2070
- NLRP3 Inflammasome as a Novel Player in Myocardial Infarction.Intern Heart J. 2014; 55: 101-105https://doi.org/10.1536/ihj.13-388
- Cell-specific signaling of NLRP3 in acute myocardial infarction.J Cardiovasc Pharmacol. Published online. 2019;
- Letter by Mezzaroma, et al regarding article, “NLRP3 inflammasome as a therapeutic target in myocardial infarction.”.Int Heart J. 2014; 55: 379https://doi.org/10.1536/IHJ.14-140
- Role of pyroptosis in cardiovascular disease.Cell Proliferation. 2019; 52: e12563https://doi.org/10.1111/CPR.12563
- The NLRP3 inflammasome in acute myocardial infarction.Nature Rev Cardiol. 2018; 15: 203-214https://doi.org/10.1038/nrcardio.2017.161
- Pathophysiology of myocardial infarction.Compr Physiol. 2015; 5: 1841-1875https://doi.org/10.1002/cphy.c150006
- HMGB1, IL-1α, IL-33 and S100 proteins: Dual-function alarmins.Cellular and Molecular Immunol. 2017; 14: 43-64https://doi.org/10.1038/cmi.2016.34
- Release of High Mobility Group Box 1 by Dendritic Cells Controls T Cell Activation via the Receptor for Advanced Glycation End Products.The J Immunol. 2005; 174: 7506-7515https://doi.org/10.4049/jimmunol.174.12.7506
- The nuclear factor NF-kappaB pathway in inflammation.Cold Spring Harb Perspect Biol. 2009; 1a001651https://doi.org/10.1101/cshperspect.a001651
- Unified polymerization mechanism for the assembly of asc-dependent inflammasomes.Cell. 2014; 156: 1193-1206https://doi.org/10.1016/j.cell.2014.02.008
- Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores.Nature. 2016; 535 (2016 535:7610): 153-158https://doi.org/10.1038/nature18629
- Regulation of inflammasome signaling.Nature Immunol. 2012; 13: 333-342https://doi.org/10.1038/NI.2237
- Cryopyrin activates the inflammasome in response to toxins and ATP.Nature. 2006; 440: 228-232https://doi.org/10.1038/NATURE04515
- NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux.Nature. 2016; 530: 354-357https://doi.org/10.1038/NATURE16959
- Critical role for calcium mobilization in activation of the NLRP3 inflammasome.Proc Natl Acad Sci U S A. 2012; 109: 11282-11287https://doi.org/10.1073/PNAS.1117765109
- Gout-associated uric acid crystals activate the NALP3 inflammasome.Nature. 2006; 440: 237-241https://doi.org/10.1038/nature04516
- Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death.Cell Cycle. 2013; 12: 1868-1878https://doi.org/10.4161/CC.24903
- Autophagy in major human diseases.The EMBO Journal. 2021; 40e108863https://doi.org/10.15252/embj.2021108863
- Inflammasome and Autophagy Regulation: A Two-way Street.Molecular Med. 2017; 23: 1https://doi.org/10.2119/molmed.2017.00077
- Mitochondrial Dynamics in Adult Cardiomyocytes and Heart Diseases.Frontiers in Cell and Developmental Biol. 2020; 8: 1555https://doi.org/10.3389/FCELL.2020.584800/BIBTEX
- Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation.The J Immunol. 2013; 191: 5230-5238https://doi.org/10.4049/jimmunol.1301490
- Mitochondrial dysfunction and myocardial ischemia-reperfusion: implications for novel therapies.Ann Rev Pharmacol and Toxicol. 2017; 57: 535-565https://doi.org/10.1146/annurev-pharmtox-010715-103335
- Production of reactive oxygen species by mitochondria: Central role of complex III.J Biological Chemistry. 2003; 278: 36027-36031https://doi.org/10.1074/jbc.M304854200
- Mitochondrial and mitochondrial-independent pathways of myocardial cell death during ischaemia and reperfusion injury.J Cellular and Molecular Med. 2020; 24: 3795-3806https://doi.org/10.1111/JCMM.15127
- TXNIP in metabolic regulation: physiological role and therapeutic outlook.Curr Drug Targets. 2017; 18https://doi.org/10.2174/1389450118666170130145514
- Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation.Immunity. 2013; 39: 311-323https://doi.org/10.1016/j.immuni.2013.08.001
- The role of mitochondrial quality control in cardiac ischemia/reperfusion injury.Oxidative Medicine and Cellul Longevity. 2021; : 2021https://doi.org/10.1155/2021/5543452
- NLRP3 inflammasome, an immune-inflammatory target in pathogenesis and treatment of cardiovascular diseases.Clin Transl Med. 2020; 10: 91-106https://doi.org/10.1002/CTM2.13
- Regulatory Mechanisms of the NLRP3 Inflammasome, a Novel Immune-Inflammatory Marker in Cardiovascular Diseases.Front Immunol. 2019; 10https://doi.org/10.3389/FIMMU.2019.01592
- Söderberg-Nauclér C. Inflammation and atherosclerosis.Ann Rev Pathol. 2006; 1: 297-329https://doi.org/10.1146/ANNUREV.PATHOL.1.110304.100100
- Acute Myocardial Infarction. Campion EW.New Eng J Med. 2017; 376: 2053-2064https://doi.org/10.1056/NEJMra1606915
- NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis.Circ Res. 2018; 122: 1722-1740https://doi.org/10.1161/CIRCRESAHA.118.311362
- Novel Insights Into the NLRP 3 Inflammasome in Atherosclerosis.J Am Heart Assoc. 2019; 8https://doi.org/10.1161/JAHA.119.012219
- NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals.Nature. 2010; 464: 1357-1361https://doi.org/10.1038/nature08938
- Inflammation and NLRP3 Inflammasome Activation Initiated in Response to Pressure Overload by Ca2+/Calmodulin-Dependent Protein Kinase II δ Signaling in Cardiomyocytes Are Essential for Adverse Cardiac Remodeling.Circulation. 2018; 138: 2530-2544https://doi.org/10.1161/CIRCULATIONAHA.118.034621
- Aging Induces an Nlrp3 Inflammasome-Dependent Expansion of Adipose B Cells That Impairs Metabolic Homeostasis.Cell Metabolism. 2019; 30 (e6): 1024-1039https://doi.org/10.1016/J.CMET.2019.10.006
- Nebivolol improves obesity-induced vascular remodelling by suppressing NLRP3 activation.J Cardiovasc Pharmacol. 2019; 73: 326-333https://doi.org/10.1097/FJC.0000000000000667
- Adapting to obesity with adipose tissue inflammation.Nature Rev Endocrinol. 2017; 13: 633-643https://doi.org/10.1038/NRENDO.2017.90
- The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance.Nature Med. 2011; 17 (2011 17:2): 179-188https://doi.org/10.1038/nm.2279
- Baseline cardiovascular comorbidities, and the influence on cancer treatment decision-making in women with breast cancer.Ecancermedicalscience. 2021; : 15https://doi.org/10.3332/ECANCER.2021.1293
- Cardio-onco-metabolism: metabolic remodeling in cardiovascular disease and cancer.Nature Rev Cardiol. 2022; 19 (2022 19:6): 414-425https://doi.org/10.1038/S41569-022-00698-6
- The Role of IL-1β on Atrial Fibrillation Physiopathology.Biophysical J. 2020; 118: 569a-570ahttps://doi.org/10.1016/J.BPJ.2019.11.3100
- Enhanced Cardiomyocyte NLRP3 Inflammasome Signaling Promotes Atrial Fibrillation.Circulation. 2018; 138: 2227-2242https://doi.org/10.1161/CIRCULATIONAHA.118.035202
- Interleukin-18 among atrial fibrillation patients in the absence of structural heart disease.EP Europace. 2010; 12: 1713-1718https://doi.org/10.1093/EUROPACE/EUQ321
- Formation of the inflammasome in acute myocarditis.Internat J Cardiol. 2014; 171: e119-e121https://doi.org/10.1016/j.ijcard.2013.12.137
- Involvement of NLRP3 inflammasome in CVB3-induced viral myocarditis.Am J Physiol - Heart and Circulatory Physiol. 2014; 307: H1438-H1447https://doi.org/10.1152/AJPHEART.00441.2014/ASSET/IMAGES/LARGE/ZH40221413250007.JPEG
- Immune checkpoint inhibitors and cardiotoxicity: possible mechanisms, manifestations, diagnosis and management.Expert Rev Anticancer Ther. 2021; 21: 1211-1228https://doi.org/10.1080/14737140.2021.1979396
- Increased Interleukin 18-Dependent Immune Responses Are Associated With Myopericarditis After COVID-19 mRNA Vaccination.Front Immunol. 2022; 13https://doi.org/10.3389/FIMMU.2022.851620
- mRNA vaccine for cancer immunotherapy.Molecular Cancer. 2021; 20https://doi.org/10.1186/S12943-021-01335-5
- An update on the pathophysiology of acute and recurrent pericarditis.Panminerva Med. 2021; 63: 249-260https://doi.org/10.23736/S0031-0808.20.04205-6
- Acute Pericarditis. Solomon CG, ed.Progress in Cardiovasc Diseases. 2017; 59: 349-359https://doi.org/10.1016/j.pcad.2016.12.001
- Radiation-related chronic heart disease.Chest. 1983; 83: 875-878https://doi.org/10.1378/chest.83.6.875
- Chemotherapy-induced cardiomyopathy.Heart Failure Rev. 2015; 20: 721-730https://doi.org/10.1007/s10741-015-9502-y
- The Role of NLRP3 Inflammasome in Pericarditis: Potential for Therapeutic Approaches.JACC Basic Transl Sci. 2021; 6: 137-150https://doi.org/10.1016/J.JACBTS.2020.11.016
- Phase 3 Trial of Interleukin-1 Trap Rilonacept in Recurrent Pericarditis.New Eng J Med. 2021; 384: 31-41https://doi.org/10.1056/NEJMOA2027892
- Effect of anakinra on recurrent pericarditis among patients with colchicine resistance and corticosteroid dependence: The AIRTRIP randomized clinical trial.JAMA - J Am Med Ass. 2016; 316: 1906-1912https://doi.org/10.1001/JAMA.2016.15826
- Anthracyclines.Side Effects of Drugs Annl. 2022; 36: 683-694https://doi.org/10.1016/B978-0-444-63407-8.00045-9
- Anthracycline Cardiotoxicity.Circulation Res. 2018; 122: 188-190https://doi.org/10.1161/CIRCRESAHA.117.312395
- Anthracyclines.Side Effects of Drugs Annual. 2022; 36: 683-694https://doi.org/10.1016/B978-0-444-63407-8.00045-9
- Identification of the molecular basis of doxorubicin-induced cardiotoxicity.Nat Med. 2012; 18: 1639-1642https://doi.org/10.1038/NM.2919
- Cardiotoxicity of Anthracyclines.Frontiers in Cardiovasc Med. 2020; 7https://doi.org/10.3389/fcvm.2020.00026
- Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management.Prog Cardiovasc Dis. 2007; 49: 330-352https://doi.org/10.1016/J.PCAD.2006.10.002
- Anthracycline cardiotoxicity: An update on mechanisms, monitoring and prevention.Heart. 2018; 104: 971-977https://doi.org/10.1136/heartjnl-2017-312103
- Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy.Circulation. 2015; 131: 1981-1988https://doi.org/10.1161/CIRCULATIONAHA.114.013777
- The role of anthracyclines in cardio-oncology: oxidative stress, inflammation, and autophagy.Oxid Med Cell Longev. 2022; 2022: 1-3https://doi.org/10.1155/2022/9862524
- Recombinant human interleukin-1 receptor antagonist protects mice against acute doxorubicin-induced cardiotoxicity.Eur J Pharmacol. 2010; 643: 247-253https://doi.org/10.1016/J.EJPHAR.2010.06.024
- Doxorubicin and daunorubicin induce processing and release of interleukin-1β through activation of the NLRP3 inflammasome.Cancer Biol and Therapy. 2011; 11: 1008-1016https://doi.org/10.4161/cbt.11.12.15540
- Production of IL-1β by bone marrow-derived macrophages in response to chemotherapeutic drugs: Synergistic effects of doxorubicin and vincristine.Cancer Biol and Therapy. 2014; 15: 1395-1403https://doi.org/10.4161/cbt.29922
- Pharmacologic Inhibition of the NLRP3 Inflammasome Preserves Cardiac Function after Ischemic and Nonischemic Injury in the Mouse.J Cardiovasc Pharmacol. 2015; 66: 1-8https://doi.org/10.1097/FJC.0000000000000247
- Doxorubicin induces cardiomyocyte pyroptosis via the TINCR-mediated posttranscriptional stabilization of NLR family pyrin domain containing 3.J Molecular and Cellular Cardiol. 2019; 136: 15-26https://doi.org/10.1016/j.yjmcc.2019.08.009
- Rho Kinase Inhibition by Fasudil Attenuates Adriamycin-Induced Chronic Heart Injury.Cardiovasc Toxicol. 2020; 20: 351-360https://doi.org/10.1007/S12012-019-09561-6
- NLRP3 Deficiency Reduces Macrophage Interleukin-10 Production and Enhances the Susceptibility to Doxorubicin-induced Cardiotoxicity.Scientific Reports. 2016; 6: 1-11https://doi.org/10.1038/srep26489
- NLRP3 Inflammasome in Cardioprotective Signaling.J Cardiovasc Pharmacol. 2019; 74: 271-275https://doi.org/10.1097/FJC.0000000000000696
- Resveratrol reduces cardiac NLRP3-inflammasome activation and systemic inflammation to lessen doxorubicin-induced cardiotoxicity in juvenile mice.FEBS Lett. 2021; 595: 1681-1695https://doi.org/10.1002/1873-3468.14091
- Drugs to Inhibit the NLRP3 Inflammasome: Not Always On Target.J Cardiovasc Pharmacol. 2019; 74: 225-227https://doi.org/10.1097/FJC.0000000000000729
- Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy.J Cellular Physiol. 2015; 230: 1567-1579https://doi.org/10.1002/JCP.24903
- Risk of Heart Failure with Preserved Ejection Fraction in Older Women after Contemporary Radiotherapy for Breast Cancer.Circulation. 2017; 135: 1388-1396https://doi.org/10.1161/CIRCULATIONAHA.116.025434
- Increased C-reactive protein is associated with the severity of thoracic radiotherapy-induced cardiomyopathy.Cardiooncology. 2020; 6https://doi.org/10.1186/S40959-020-0058-1
- Determinants of Cardiorespiratory Fitness Following Thoracic Radiotherapy in Lung or Breast Cancer Survivors.Am J Cardiol. 2020; 125: 988-996https://doi.org/10.1016/j.amjcard.2019.12.019
- The Role of NLRP3 Inflammasome in Radiation-Induced Cardiovascular Injury.Front Cell Dev Biol. 2020; 8https://doi.org/10.3389/FCELL.2020.00140
- Radiotherapy-Induced Anti-Tumor Immunity Contributes to the Therapeutic Efficacy of Irradiation and Can Be Augmented by CTLA-4 Blockade in a Mouse Model.PLOS ONE. 2014; 9: e92572https://doi.org/10.1371/JOURNAL.PONE.0092572
- Prevention of radiotherapy-induced arterial inflammation by interleukin-1 blockade.European Heart J. 2019; 40: 2495-2503https://doi.org/10.1093/EURHEARTJ/EHZ206
- Gamma Radiation Induce Inflammasome Signaling and Pyroptosis in Microvascular Endothelial Cells.J Inflammation Res. 2021; 14: 3277https://doi.org/10.2147/JIR.S318812
- Role of Interleukin-1 in Radiation-Induced Cardiomyopathy.Molecular Med. 2015; 21: 210-218https://doi.org/10.2119/molmed.2014.00243
- Experimental cardiac radiation exposure induces ventricular diastolic dysfunction with preserved ejection fraction.Am J Physiol Heart Circ Physiol. 2017; 313: H392-H407https://doi.org/10.1152/AJPHEART.00124.2017
- Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition.Nature Reviews Can. 2007; 7: 332-344https://doi.org/10.1038/nrc2106
- Somatic gene mutation and human disease other than cancer: An update.Mutation Res - Rev in Mutation Res. 2010; 705: 96-106https://doi.org/10.1016/j.mrrev.2010.04.002
- Cell signaling by receptor tyrosine kinases.Cell. 2010; 141: 1117-1134https://doi.org/10.1016/j.cell.2010.06.011
- Tyrosine kinase inhibitors in cancer therapy.Clin Biochemistry. 2004; 37: 618-635https://doi.org/10.1016/j.clinbiochem.2004.05.006
- Receptor tyrosine kinases as targets for anticancer drugs.Trends in Molecular Med. 2002; 8: 17-23https://doi.org/10.1016/S1471-4914(01)02217-1
- Targeting conformational plasticity of protein kinases.ACS Chemical Biol. 2015; 10: 190-200https://doi.org/10.1021/cb500870a
- Cardiovascular Toxicity Induced by Kinase Inhibitors: Mechanisms and Preclinical Approaches.Chem Res in Toxicol. 2020; 33: 125-136https://doi.org/10.1021/acs.chemrestox.9b00387
Mauro AG, Hunter K, Salloum FN. Cardiac complications of cancer therapies. Published online April 20, 2022. doi:10.1016/BS.ACR.2022.03.006
- Cardiotoxicity of Tyrosine-Kinase-Targeting Drugs.Cardiovasc & Hematological Agents in Medicinal Chem. 2010; 8: 11-21https://doi.org/10.2174/187152510790796192
- Mitochondrial oxidative stress plays a critical role in the cardiotoxicity of sunitinib: Running title: Sunitinib and oxidative stress in hearts.Toxicology. 2019; : 426https://doi.org/10.1016/j.tox.2019.152281
- Polydatin Reduces Cardiotoxicity and Enhances the Anticancer Effects of Sunitinib by Decreasing Pro-Oxidative Stress, Pro-Inflammatory Cytokines, and NLRP3 Inflammasome Expression.Frontiers in Oncol. 2021; 11: 2188https://doi.org/10.3389/fonc.2021.680758
- Hsp90 inhibitor geldanamycin attenuates the cytotoxicity of sunitinib in cardiomyocytes via inhibition of the autophagy pathway.Toxicology and Applied Pharmacol. 2017; 329: 282-292https://doi.org/10.1016/j.taap.2017.06.015
- Nilotinib induces ER stress and cell death in H9c2 cells.Physiological Research. 2016; 65: S505-S514https://doi.org/10.33549/physiolres.933504
- Tyrosine kinase inhibitors trigger lysosomal damage-associated cell lysis to activate the NLRP3 inflammasome.bioRxiv. 2022; (Published online February 19): 1-45https://doi.org/10.1101/2022.02.19.480941
- Cardiotoxicities of novel cancer immunotherapies.Heart. 2021; 0: 1-10https://doi.org/10.1136/heartjnl-2020-318083
- Myocarditis in Patients Treated With Immune Checkpoint Inhibitors.J Am Coll Cardiol. 2018; 71: 1755-1764https://doi.org/10.1016/j.jacc.2018.02.037
- Autoimmune Myocarditis Caused by Immune Checkpoint Inhibitors Treated with Antithymocyte Globulin.J Immunotherapy. 2018; 41: 332-335https://doi.org/10.1097/CJI.0000000000000239
- A guide to cancer immunotherapy: from T cell basic science to clinical practice.Nature Reviews Immunol. 2020; 20: 651-668https://doi.org/10.1038/s41577-020-0306-5
- Evaluation of rare but severe immune related adverse effects in PD-1 and PD-L1 inhibitors in non-small cell lung cancer: a meta-analysis.Translational Lung Cancer Res. 2017; 6: S8-S20https://doi.org/10.21037/tlcr.2017.12.10
- Targeted Cancer Therapies With Pericardial Effusions Requiring Pericardiocentesis Focusing on Immune Checkpoint Inhibitors.Am J Cardiol. 2019; 123: 1351-1357https://doi.org/10.1016/j.amjcard.2019.01.013
Lyon AR, Yousaf N, Battisti NML, et al. Immune checkpoint inhibitors and cardiovascular toxicity. 2018;19:e447-e458. doi:10.1016/S1470-2045(18)30457-1
- Fulminant Myocarditis with Combination Immune Checkpoint Blockade.New Eng J Med. 2016; 375: 1749-1755https://doi.org/10.1056/nejmoa1609214
- Evidences of CTLA-4 and PD-1 blocking agents-induced cardiotoxicity in cellular and preclinical models.J Personalized Medicine. 2020; 10: 1-19https://doi.org/10.3390/jpm10040179
- Protective Effect of Crocin on Immune Checkpoint Inhibitors-Related Myocarditis Through Inhibiting NLRP3 Mediated Pyroptosis in Cardiomyocytes via NF-κB Pathway.J Inflammation Res. 2022; 15: 1653-1666https://doi.org/10.2147/JIR.S348464
- Trastuzumab cardiotoxicity: from clinical trials to experimental studies.British J Pharmacol. 2017; 174: 3727-3748https://doi.org/10.1111/bph.13643
- Acute cardiotoxic effects of adjuvant trastuzumab treatment and its relation to oxidative stress.Angiology. 2014; 65: 944-949https://doi.org/10.1177/0003319714523112
- Cardiotoxicity of ErbB2-targeted therapies and its impact on drug development, a spotlight on trastuzumab.Expert Opinion on Drug Metabolism and Toxicol. 2017; 13: 755-766https://doi.org/10.1080/17425255.2017.1337746
Mohan N, Jiang J, Wu WJ. Implications of Autophagy and Oxidative Stress in Trastuzumab-Mediated Cardiac Toxicities. Austin Pharmacol Pharm. 2017;2. Accessed May 16, 2022. Available at:http://www.ncbi.nlm.nih.gov/pubmed/30288503%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6168002
- Blockade of the erbB2 receptor induces cardiomyocyte death through mitochondrial and reactive oxygen species-dependent pathways.J Biological Chemistry. 2009; 284: 2080-2087https://doi.org/10.1074/jbc.M804570200
- Trastuzumab alters the expression of genes essential for cardiac function and induces ultrastructural changes of cardiomyocytes in mice.PLoS ONE. 2013; 8: 79543https://doi.org/10.1371/journal.pone.0079543
- Trastuzumab-induced cardiac dysfunction: A “dual-hit.”.Experimental and Clin Cardiol. 2011; 16: 70-74
- Trastuzumab, but not pertuzumab, dysregulates HER2 signaling to mediate inhibition of autophagy and increase in reactive oxygen species production in human cardiomyocytes.Molecular Can Therapeutics. 2016; 15: 1321-1331https://doi.org/10.1158/1535-7163.MCT-15-0741
- the Sodium-Glucose Cotransporter-2 Inhibitor Dapagliflozin Exerts Cardioprotective Effects Against Doxorubicin and Trastuzumab Toxicity Through Tlr4/Myd88/Nf-Kb Signaling and Nlrp3 Inflammasome Pathway.J Am Coll Cardiol. 2020; 75: 1192https://doi.org/10.1016/s0735-1097(20)31819-2
- SGLT-2 Inhibition with Dapagliflozin Reduces the Activation of the Nlrp3/ASC Inflammasome and Attenuates the Development of Diabetic Cardiomyopathy in Mice with Type 2 Diabetes. Further Augmentation of the Effects with Saxagliptin, a DPP4 Inhibitor.Cardiovasc Drugs and Therapy. 2017; 31: 119-132https://doi.org/10.1007/S10557-017-6725-2
Maurea N, Quagliariello V, Laurentiis M de, et al. The SGLT-2 inhibitor dapagliflozin reduces cell death and apoptosis in cardiomyocytes exposed to trastuzumab and doxorubicin through NLRP3-mediated pathways. 2021;39(15_suppl):e15041-e15041. doi:10.1200/JCO.2021.39.15_SUPPL.E15041
- the Sodium-Glucose Cotransporter-2 Inhibitor Dapagliflozin Exerts Cardioprotective Effects Against Doxorubicin and Trastuzumab Toxicity Through Tlr4/Myd88/Nf-Kb Signaling and Nlrp3 Inflammasome Pathway.J Am Coll Cardiol. 2020; 75: 1192https://doi.org/10.1016/s0735-1097(20)31819-2
- Glibenclamide: an old drug with a novel mechanism of action?.Acta Diabetol. 1997; 34: 239-244https://doi.org/10.1007/S005920050081
- Glyburide inhibits the Cryopyrin/Nalp3 inflammasome.J Cell Biol. 2009; 187: 61-70https://doi.org/10.1083/jcb.200903124
- A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse.J Cardiovasc Pharmacol. 2014; 63: 316-322https://doi.org/10.1097/FJC.0000000000000053
Coll RC, Hill JR, Day CJ, et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. 2019;15:556-559.
- A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases.Nature Med. 2015; 21: 248-255https://doi.org/10.1038/nm.3806
- Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer's disease in rodent models.Nature Commun. 2016; 7: 1-10https://doi.org/10.1038/ncomms12504
- Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice.Brain, Behavior, and Immunity. 2017; 61: 306-316https://doi.org/10.1016/j.bbi.2016.12.014
- NLRP3 Inflammasome Inhibition by MCC950 Reduces Atherosclerotic Lesion Development in Apolipoprotein E-Deficient Mice-Brief Report.Arterioscler Thromb Vasc Biol. 2017; 37: 1457-1461https://doi.org/10.1161/ATVBAHA.117.309575
- MCC950/CRID3 potently targets the NACHT domain of wild-type NLRP3 but not disease-associated mutants for inflammasome inhibition.PLOS Biol. 2019; 17e3000354https://doi.org/10.1371/JOURNAL.PBIO.3000354
- The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction.Euro Heart J. 2017; 38: 828-836https://doi.org/10.1093/eurheartj/ehw247
- Precisely and Efficiently Enzyme Response Microspheres with Immune Removal Escape Loaded with MCC950 Ameliorate Cardiac Dysfunction in Acute Myocardial Infarction.J Biomed Nanotechnol. 2020; 16: 153-165https://doi.org/10.1166/JBN.2020.2885
- The SGK1 inhibitor EMD638683, prevents Angiotensin II–induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome activation.Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2018; 1864: 1-10https://doi.org/10.1016/J.BBADIS.2017.10.001
- Interleukin 18 function in atherosclerosis is mediated by the interleukin 18 receptor and the Na-Cl co-transporter.Nature Med. 2015; 21: 820-826https://doi.org/10.1038/nm.3890
- NLRP3-inflammasome inhibition prevents high fat and high sugar diets-induced heart damage through autophagy induction.Oncotarget. 2017; 8: 99740-99756https://doi.org/10.18632/ONCOTARGET.20763
- Doxorubicin induces cardiomyocyte pyroptosis via the TINCR-mediated posttranscriptional stabilization of NLR family pyrin domain containing 3.J Mol Cell Cardiol. 2019; 136: 15-26https://doi.org/10.1016/J.YJMCC.2019.08.009
- Involvement of ROS/NLRP3 Inflammasome Signaling Pathway in Doxorubicin-Induced Cardiotoxicity.Cardiovasc Toxicol. 2020; 20: 507-519https://doi.org/10.1007/S12012-020-09576-4/FIGURES/8
- The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide.Biochemical and Biophysical Res Commun. 1997; 237: 527-531https://doi.org/10.1006/bbrc.1997.6878
- Hydrogen sulfide and cardioprotection - Mechanistic insights and clinical translatability.Pharmacol and Therapeutics. 2015; 152: 11-17https://doi.org/10.1016/j.pharmthera.2015.04.004
- Induction of microrna-21 with exogenous hydrogen sulfide attenuates myocardial ischemic and inflammatory injury in mice.Circulation: Cardiovasc Genetics. 2014; 7: 311-320https://doi.org/10.1161/CIRCGENETICS.113.000381
- Hydrogen sulfide inhibits NLRP3 inflammasome activation and reduces cytokine production both in vitro and in a mouse model of inflammation.J Biolog Chemistry. 2018; 293: 2546-2557https://doi.org/10.1074/jbc.M117.806869
- Hydrogen sulfide protects H9c2 cells against doxorubicin-induced cardiotoxicity through inhibition of endoplasmic reticulum stress.Molecular and Cellular Biochem. 2012; 363: 419-426https://doi.org/10.1007/S11010-011-1194-6/FIGURES/7
Abstract 13856: Hydrogen Sulfide Donor, SG1002, Preserves Left Ventricular Global Function and Contractile Reserve in a Mouse Model of Doxorubicin Cardiotoxicity | Circulation. Accessed May 26, 2022. Available at: https://www.ahajournals.org/doi/10.1161/circ.144.suppl_1.13856
- Colchicine-Update on mechanisms of action and therapeutic uses.Sem in Arthritis and Rheumatism. 2015; 45: 341-350https://doi.org/10.1016/j.semarthrit.2015.06.013
- Colchicine in Acute Myocardial Infarction: “Teaching New Tricks to an Old Dog.Translational Medicine. 2015; 05https://doi.org/10.4172/2161-1025.1000e133
- Anti-inflammatory treatment with colchicine in acute myocardial infarction: A pilot study.Circulation. 2015; 132: 1395-1403https://doi.org/10.1161/CIRCULATIONAHA.115.017611
- Effect of Colchicine on Myocardial Injury in Acute Myocardial Infarction.Circulation. 2021; 144: 859-869https://doi.org/10.1161/CIRCULATIONAHA.121.056177
- Low-Dose Colchicine for Secondary Prevention of Cardiovascular Disease.J Am Coll Cardiol. 2013; 61: 404-410https://doi.org/10.1016/J.JACC.2012.10.027
- Colchicine in Patients with Chronic Coronary Disease.New England Journal of Med. 2020; 383: 1838-1847
- Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction.New England Journal of Med. 2019; 381: 2497-2505https://doi.org/10.1056/nejmoa1912388
- Colchicine in Patients With Acute Coronary Syndrome: The Australian COPS Randomized Clinical Trial.Circulation. 2020; 142: 1890-1900https://doi.org/10.1161/CIRCULATIONAHA.120.050771
- Colchicine Therapy and Plaque Stabilization in Patients With Acute Coronary Syndrome: A CT Coronary Angiography Study.JACC: Cardiovasc Imaging. 2018; 11: 305-316https://doi.org/10.1016/J.JCMG.2017.08.013
- Anti-inflammatory compounds parthenolide and bay 11-7082 are direct inhibitors of the inflammasome.J Biological Chemistry. 2010; 285: 9792-9802https://doi.org/10.1074/JBC.M109.082305
- The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer's disease.Proc Natl Acad Sci U S A. 2020; 117: 32145-32154https://doi.org/10.1073/PNAS.2009680117
- OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation.Proceedings of the National Academy of Sci. 2018; 115201716095https://doi.org/10.1073/pnas.1716095115
- Acute Effects of Interleukin-1 Blockade Using Anakinra in Patients with Acute Pericarditis.J Cardiovascular Pharmacol. 2020; 76: 50-52https://doi.org/10.1097/FJC.0000000000000847