Advertisement

Inflammasome signaling in colorectal cancer

Published:September 20, 2022DOI:https://doi.org/10.1016/j.trsl.2022.09.002

      Abstract

      Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths in the world. Inflammation is often an underlying risk factor for developing CRC. Maintaining gut homeostasis and balancing inflammation is therefore critical to prevent CRC development. One key class of molecular complexes that impact gut homeostasis are inflammasomes, cytosolic multiprotein immune complexes that assemble upon sensing various intracellular alterations. Inflammasomes regulate inflammation, cell death, cytokine release, signaling cascades, and other cellular processes. Roles for inflammasomes in colitis and colitis-associated CRC have been shown in multiple animal models. The activation of inflammasomes leads to the release of the bioactive forms of interleukin (IL)-1β and IL-18, the inflammasome effector cytokines. These cytokines ensure an optimal inflammatory immune response during colitis and colitis-associated CRC. The activation of some inflammasome sensors, including NLRP3, NLRP1, NLRP6, and Pyrin, provides protection from colitis-associated CRC via effector cytokine-dependent mechanisms. Additionally, activation of other inflammasome sensors, such as AIM2, NLRC4, and NAIPs, provides mostly effector cytokine-independent protection. Inflammasomes can also act as integral components of PANoptosomes, which are multifaceted complexes that integrate components from other cell death pathways and regulate a unique form of innate immune inflammatory cell death called PANoptosis. Furthermore, IRF1, a key regulator of some inflammasomes and PANoptosomes, has been implicated in CRC. It is therefore critical to consider the role of inflammasomes in effector cytokine-dependent and -independent protection as well as their role in PANoptosis to modulate CRC for therapeutic targeting. Here, we discuss the mechanisms of inflammasome activation, the functions of inflammasomes in CRC, and current obstacles and future perspectives in inflammasome and CRC research.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sung H
        • Ferlay J
        • Siegel RL
        • et al.
        Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
        CA Cancer J Clin. 2021; 71: 209-249
        • Pandey A
        • Shen C
        • Man SM.
        Inflammasomes in colitis and colorectal cancer: mechanism of action and therapies.
        Yale J Biol Med. 2019; 92: 481-498
        • Herrinton LJ
        • Liu L
        • Levin TR
        • Allison JE
        • Lewis JD
        • Velayos F.
        Incidence and mortality of colorectal adenocarcinoma in persons with inflammatory bowel disease from 1998 to 2010.
        Gastroenterology. 2012; 143: 382-389
        • Anderson NM
        • Simon MC.
        The tumor microenvironment.
        Curr Biol. 2020; 30: R921-R925
        • Christgen S
        • Kanneganti TD.
        Inflammasomes and the fine line between defense and disease.
        Curr Opinion in Immunol. 2020; 62: 39-44
        • Martinon F
        • Burns K
        • Tschopp J.
        The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta.
        Mol Cell. 2002; 10: 417-426
        • Kanneganti TD
        • Ozoren N
        • Body-Malapel M
        • et al.
        Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3.
        Nature. 2006; 440: 233-236
        • Karki R
        • Sharma BR
        • Tuladhar S
        • et al.
        Synergism of TNF-alpha and IFN-gamma triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes.
        Cell. 2021; 184 (e117): 149-168
        • Malireddi RKS
        • Kesavardhana S
        • Karki R
        • Kancharana B
        • Burton AR
        • Kanneganti TD.
        RIPK1 distinctly regulates yersinia-induced inflammatory cell death, PANoptosis.
        Immunohorizons. 2020; 4: 789-796
        • Malireddi RKS
        • Karki R
        • Sundaram B
        • et al.
        Inflammatory cell death, PANoptosis, mediated by cytokines in diverse cancer lineages inhibits tumor growth.
        Immunohorizons. 2021; 5: 568-580
        • Malireddi RKS
        • Gurung P
        • Mavuluri J
        • et al.
        TAK1 restricts spontaneous NLRP3 activation and cell death to control myeloid proliferation.
        J Exp Med. 2018; 215: 1023-1034
        • Malireddi RK
        • Ippagunta S
        • Lamkanfi M
        • Kanneganti TD.
        Cutting edge: proteolytic inactivation of poly(ADP-ribose) polymerase 1 by the Nlrp3 and Nlrc4 inflammasomes.
        J Immunol. 2010; 185: 3127-3130
        • Karki R
        • Sundaram B
        • Sharma BR
        • et al.
        ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis.
        Cell Rep. 2021; 37109858
        • Karki R
        • Sharma BR
        • Lee E
        • et al.
        Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer.
        JCI Insight. 2020; 5: e136720
        • Kuriakose T
        • Man SM
        • Malireddi RK
        • et al.
        ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways.
        Sci Immunol. 2016; 1: aag2045
        • Christgen S
        • Zheng M
        • Kesavardhana S
        • et al.
        Identification of the PANoptosome: a molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis).
        Front Cell Infect Microbiol. 2020; 10: 237
        • Zheng M
        • Karki R
        • Vogel P
        • Kanneganti TD.
        Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense.
        Cell. 2020; 181 (e613): 674-687
        • Lee S
        • Karki R
        • Wang Y
        • Nguyen LN
        • Kalathur RC
        • Kanneganti TD.
        AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence.
        Nature. 2021; 597: 415-419
        • Kesavardhana S
        • Malireddi RKS
        • Burton AR
        • et al.
        The Zalpha2 domain of ZBP1 is a molecular switch regulating influenza-induced PANoptosis and perinatal lethality during development.
        J Biol Chem. 2020; 295: 8325-8330
        • Banoth B
        • Tuladhar S
        • Karki R
        • et al.
        ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis).
        J Biol Chem. 2020; 295: 18276-18283
        • Zheng M
        • Williams EP
        • Malireddi RKS
        • et al.
        Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via caspase-8/RIPK3 during coronavirus infection.
        J Biol Chem. 2020; 295: 14040-14052
        • Lukens JR
        • Gurung P
        • Vogel P
        • et al.
        Dietary modulation of the microbiome affects autoinflammatory disease.
        Nature. 2014; 516: 246-249
        • Lamkanfi M
        • Kanneganti TD
        • Van Damme P
        • et al.
        Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes.
        Mol Cell Proteomics. 2008; 7: 2350-2363
        • Gurung P
        • Burton A
        • Kanneganti TD.
        NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1beta-mediated osteomyelitis.
        Proc Natl Acad Sci U S A. 2016; 113: 4452-4457
        • Malireddi RKS
        • Gurung P
        • Kesavardhana S
        • et al.
        Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity-independent pyroptosis, apoptosis, necroptosis, and inflammatory disease.
        J Exp Med. 2020; 217 (jem.20191644)
        • Wang Yaqiu
        • Pandian Nagakannan
        • Han Joo-Hui
        • Sundaram Balamurugan
        • Lee SangJoon
        • Karki Rajendra
        • Guy Clifford
        • Kanneganti Thirumala-Devi
        Single cell analysis of PANoptosome cell death complexes through an expansion microscopy method.
        Cell Mol Life Sci. 2022; 79: 531https://doi.org/10.1007/s00018-022-04564-z
        • Malireddi RKS
        • Kesavardhana S
        • Kanneganti TD.
        ZBP1 and TAK1: Master Regulators of NLRP3 Inflammasome/Pyroptosis, Apoptosis, and Necroptosis (PAN-optosis).
        Front Cell Infect Microbiol. 2019; 9: 406
        • Man SM
        • Zhu Q
        • Zhu L
        • et al.
        Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer.
        Cell. 2015; 162: 45-58
        • Allen IC
        • TeKippe EM
        • Woodford RM
        • et al.
        The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer.
        J Exp Med. 2010; 207: 1045-1056
        • Zaki MH
        • Boyd KL
        • Vogel P
        • Kastan MB
        • Lamkanfi M
        • Kanneganti TD.
        The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis.
        Immunity. 2010; 32: 379-391
        • Sharma D
        • Malik A
        • Guy CS
        • Karki R
        • Vogel P
        • Kanneganti TD.
        Pyrin inflammasome regulates tight junction integrity to restrict colitis and tumorigenesis.
        Gastroenterology. 2018; 154 (e948): 948-964
        • Zaki MH
        • Vogel P
        • Body-Malapel M
        • Lamkanfi M
        • Kanneganti TD.
        IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation.
        J Immunol. 2010; 185: 4912-4920
        • Karki R
        • Kanneganti TD.
        Diverging inflammasome signals in tumorigenesis and potential targeting.
        Nat Rev Cancer. 2019; 19: 197-214
        • Medzhitov R
        • Janeway Jr, C
        Innate immunity.
        N Engl J Med. 2000; 343: 338-344
        • Li D
        • Wu M.
        Pattern recognition receptors in health and diseases.
        Signal Transduct Target Ther. 2021; 6: 291
        • Man SM
        • Kanneganti TD.
        Regulation of inflammasome activation.
        Immunol Rev. 2015; 265: 6-21
        • Qu Y
        • Franchi L
        • Nunez G
        • Dubyak GR.
        Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages.
        J Immunol. 2007; 179: 1913-1925
        • Lindemann S
        • Tolley ND
        • Dixon DA
        • et al.
        Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis.
        J Cell Biol. 2001; 154: 485-490
        • MacKenzie A
        • Wilson HL
        • Kiss-Toth E
        • Dower SK
        • North RA
        • Surprenant A.
        Rapid secretion of interleukin-1beta by microvesicle shedding.
        Immunity. 2001; 15: 825-835
        • He WT
        • Wan H
        • Hu L
        • et al.
        Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion.
        Cell Res. 2015; 25: 1285-1298
        • Ridker PM
        • Everett BM
        • Thuren T
        • et al.
        Antiinflammatory therapy with canakinumab for atherosclerotic disease.
        N Engl J Med. 2017; 377: 1119-1131
        • Karki R
        • Man SM
        • Malireddi RKS
        • et al.
        NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer.
        Nature. 2016; 540: 583-587
        • Zaki MH
        • Vogel P
        • Malireddi RK
        • et al.
        The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis.
        Cancer Cell. 2011; 20: 649-660
        • Zhao H
        • Wu L
        • Yan G
        • et al.
        Inflammation and tumor progression: signaling pathways and targeted intervention.
        Signal Transduct Target Ther. 2021; 6: 263
        • Kim ER
        • Chang DK.
        Colorectal cancer in inflammatory bowel disease: the risk, pathogenesis, prevention and diagnosis.
        World J Gastroenterol. 2014; 20: 9872-9881
        • Martinon F
        • Mayor A
        • Tschopp J.
        The inflammasomes: guardians of the body.
        Annu Rev Immunol. 2009; 27: 229-265
        • Man SM
        • Jenkins BJ.
        Context-dependent functions of pattern recognition receptors in cancer.
        Nat Rev Cancer. 2022; 22: 397-413
        • Zhao P
        • Zhang Z.
        TNF-alpha promotes colon cancer cell migration and invasion by upregulating TROP-2.
        Oncol Lett. 2018; 15: 3820-3827
        • De Robertis M
        • Massi E
        • Poeta ML
        • et al.
        The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies.
        J Carcinogenesis. 2011; 10: 9
        • Williams TM
        • Leeth RA
        • Rothschild DE
        • et al.
        The NLRP1 inflammasome attenuates colitis and colitis-associated tumorigenesis.
        J Immunol. 2015; 194: 3369-3380
        • Lin Y
        • Chen J-k
        • Lew Z-x.
        Expression of NLRP3 inflammasome in colorectal cancer and its relationship with tumor characteristics and prognosis: 223.
        Am J Gastroenterol. 2018; 113: S130
        • Hu B
        • Elinav E
        • Huber S
        • et al.
        Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4.
        Proc Natl Acad Sci U S A. 2010; 107: 21635-21640
        • Huber S
        • Gagliani N
        • Zenewicz LA
        • et al.
        IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine.
        Nature. 2012; 491: 259-263
        • Sharma BR
        • Kanneganti TD.
        NLRP3 inflammasome in cancer and metabolic diseases.
        Nat Immunol. 2021; 22: 550-559
        • Guo W
        • Sun Y
        • Liu W
        • et al.
        Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer.
        Autophagy. 2014; 10: 972-985
        • Du Q
        • Wang Q
        • Fan H
        • et al.
        Dietary cholesterol promotes AOM-induced colorectal cancer through activating the NLRP3 inflammasome.
        Biochem Pharmacol. 2016; 105: 42-54
        • Bernardazzi C
        • Castelo-Branco MTL
        • Pêgo B
        • et al.
        The P2X7 receptor promotes colorectal inflammation and tumorigenesis by modulating gut microbiota and the inflammasome.
        Int J Mol Sci. 2022; 23: 4616
        • Blazejewski AJ
        • Thiemann S
        • Schenk A
        • et al.
        Microbiota normalization reveals that canonical caspase-1 activation exacerbates chemically induced intestinal inflammation.
        Cell Rep. 2017; 19: 2319-2330
        • Sastalla I
        • Crown D
        • Masters SL
        • McKenzie A
        • Leppla SH
        • Moayeri M.
        Transcriptional analysis of the three Nlrp1 paralogs in mice.
        BMC Genomics. 2013; 14: 188
        • Tye H
        • Yu CH
        • Simms LA
        • et al.
        NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease.
        Nat Commun. 2018; 9: 3728
        • Hara H
        • Seregin SS
        • Yang D
        • et al.
        The NLRP6 Inflammasome Recognizes Lipoteichoic Acid and Regulates Gram-Positive Pathogen Infection.
        Cell. 2018; 175 (e1614): 1651-1664
        • Chen GY
        • Liu M
        • Wang F
        • Bertin J
        • Núñez G.
        A functional role for Nlrp6 in intestinal inflammation and tumorigenesis.
        J Immunol. 2011; 186: 7187-7194
        • Elinav E
        • Strowig T
        • Kau AL
        • et al.
        NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis.
        Cell. 2011; 145: 745-757
        • Normand S
        • Delanoye-Crespin A
        • Bressenot A
        • et al.
        Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury.
        Proc Natl Acad Sci U S A. 2011; 108: 9601-9606
        • Kortmann J
        • Brubaker SW
        • Monack DM.
        Cutting Edge: Inflammasome Activation in Primary Human Macrophages Is Dependent on Flagellin.
        J Immunol. 2015; 195: 815-819
        • Zhao Y
        • Yang J
        • Shi J
        • et al.
        The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus.
        Nature. 2011; 477: 596-600
        • Carvalho FA
        • Nalbantoglu I
        • Aitken JD
        • et al.
        Cytosolic flagellin receptor NLRC4 protects mice against mucosal and systemic challenges.
        Mucosal Immunol. 2012; 5: 288-298
        • Mamantopoulos M
        • Ronchi F
        • McCoy KD
        • Wullaert A.
        Inflammasomes make the case for littermate-controlled experimental design in studying host-microbiota interactions.
        Gut Microbes. 2018; 9: 374-381
        • Vanhove W
        • Peeters PM
        • Staelens D
        • et al.
        Strong upregulation of AIM2 and IFI16 inflammasomes in the mucosa of patients with active inflammatory bowel disease.
        Inflamm Bowel Dis. 2015; 21: 2673-2682
        • Aguilera M
        • Darby T
        • Melgar S.
        The complex role of inflammasomes in the pathogenesis of Inflammatory Bowel Diseases - lessons learned from experimental models.
        Cytokine Growth Factor Rev. 2014; 25: 715-730
        • Wilson JE
        • Petrucelli AS
        • Chen L
        • et al.
        Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt.
        Nat Med. 2015; 21: 906-913
        • Xu M
        • Wang J
        • Li H
        • Zhang Z
        • Cheng Z.
        AIM2 inhibits colorectal cancer cell proliferation and migration through suppression of Gli1.
        Aging (Albany NY). 2020; 13: 1017-1031
        • Ratsimandresy RA
        • Indramohan M
        • Dorfleutner A
        • Stehlik C.
        The AIM2 inflammasome is a central regulator of intestinal homeostasis through the IL-18/IL-22/STAT3 pathway.
        Cell Mol Immunol. 2017; 14: 127-142
        • Shah S
        • Qin S
        • Luo Y
        • et al.
        AIM2 inhibits BRAF-mutant colorectal cancer growth in a caspase-1-dependent manner.
        Front Cell Dev Biol. 2021; 9588278
        • Birchenough GM
        • Nystrom EE
        • Johansson ME
        • Hansson GC.
        A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion.
        Science. 2016; 352: 1535-1542
        • Wlodarska M
        • Thaiss CA
        • Nowarski R
        • et al.
        NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion.
        Cell. 2014; 156: 1045-1059
        • Levy M
        • Thaiss CA
        • Zeevi D
        • et al.
        Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling.
        Cell. 2015; 163: 1428-1443
        • Lemire P
        • Robertson SJ
        • Maughan H
        • et al.
        The NLR protein NLRP6 does not impact gut microbiota composition.
        Cell Rep. 2017; 21: 3653-3661
        • Mamantopoulos M
        • Ronchi F
        • Van Hauwermeiren F
        • et al.
        Nlrp6- and ASC-dependent inflammasomes do not shape the commensal gut microbiota composition.
        Immunity. 2017; 47 (e334): 339-348
        • Galvez EJC
        • Iljazovic A
        • Gronow A
        • Flavell R
        • Strowig T.
        Shaping of intestinal microbiota in Nlrp6- and Rag2-deficient mice depends on community structure.
        Cell Rep. 2017; 21: 3914-3926
        • Lu H
        • Sun Y
        • Zhu Z
        • et al.
        Pyroptosis is related to immune infiltration and predictive for survival of colon adenocarcinoma patients.
        Sci Rep. 2022; 12: 9233
        • Ungerback J
        • Belenki D
        • Jawad ul-Hassan A
        • et al.
        Genetic variation and alterations of genes involved in NFkappaB/TNFAIP3- and NLRP3-inflammasome signaling affect susceptibility and outcome of colorectal cancer.
        Carcinogenesis. 2012; 33: 2126-2134
        • Verma D
        • Sarndahl E
        • Andersson H
        • et al.
        The Q705K polymorphism in NLRP3 is a gain-of-function alteration leading to excessive interleukin-1beta and IL-18 production.
        PLoS One. 2012; 7: e34977
        • Villani AC
        • Lemire M
        • Fortin G
        • et al.
        Common variants in the NLRP3 region contribute to Crohn's disease susceptibility.
        Nat Genet. 2009; 41: 71-76
        • Mori Y
        • Yin J
        • Rashid A
        • et al.
        Instabilotyping: comprehensive identification of frameshift mutations caused by coding region microsatellite instability.
        Cancer Res. 2001; 61: 6046-6049
        • Schulmann K
        • Brasch FE
        • Kunstmann E
        • et al.
        HNPCC-associated small bowel cancer: clinical and molecular characteristics.
        Gastroenterology. 2005; 128: 590-599
        • Dihlmann S
        • Tao S
        • Echterdiek F
        • et al.
        Lack of Absent in Melanoma 2 (AIM2) expression in tumor cells is closely associated with poor survival in colorectal cancer patients.
        Int J Cancer. 2014; 135: 2387-2396
        • Shin G
        • Kang TW
        • Yang S
        • Baek SJ
        • Jeong YS
        • Kim SY.
        GENT: gene expression database of normal and tumor tissues.
        Cancer Inform. 2011; 10: 149-157
        • Liu R
        • Truax AD
        • Chen L
        • et al.
        Expression profile of innate immune receptors, NLRs and AIM2, in human colorectal cancer: correlation with cancer stages and inflammasome components.
        Oncotarget. 2015; 6: 33456-33469
        • Qian H
        • Zhang D
        • Bao C.
        Two variants of Interleukin-1B gene are associated with the decreased risk, clinical features, and better overall survival of colorectal cancer: a two-center case-control study.
        Aging (Albany NY). 2018; 10: 4084-4092
        • Guo JY
        • Qin AQ
        • Li RK
        • et al.
        [Association of the IL-18 gene polymorphism with susceptibility to colorectal cancer].
        Zhonghua Wei Chang Wai Ke Za Zhi. 2012; 15: 400-403
        • Puri AW
        • Broz P
        • Shen A
        • Monack DM
        • Bogyo M.
        Caspase-1 activity is required to bypass macrophage apoptosis upon Salmonella infection.
        Nat Chem Biol. 2012; 8: 745-747
        • Pierini R
        • Juruj C
        • Perret M
        • et al.
        AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages.
        Cell Death Differ. 2012; 19: 1709-1721
        • Gurung P
        • Anand PK
        • Malireddi RK
        • et al.
        FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes.
        J Immunol. 2014; 192: 1835-1846
        • Yu J
        • Nagasu H
        • Murakami T
        • et al.
        Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy.
        Proc Natl Acad Sci U S A. 2014; 111: 15514-15519
        • Mohammad RM
        • Muqbil I
        • Lowe L
        • et al.
        Broad targeting of resistance to apoptosis in cancer.
        Semin Cancer Biol. 2015; 35 (Suppl): S78-S103
        • Qiu Q
        • Lin Y
        • Ma Y
        • et al.
        Exploring the emerging role of the gut microbiota and tumor microenvironment in cancer immunotherapy.
        Front Immunol. 2020; 11612202
        • Jin BR
        • Chung KS
        • Lee M
        • An HJ.
        High-fat diet propelled AOM/DSS-induced colitis-associated colon cancer alleviated by administration of aster glehni via STAT3 signaling pathway.
        Biology (Basel). 2020; 9: 24
        • Tuominen I
        • Al-Rabadi L
        • Stavrakis D
        • Karagiannides I
        • Pothoulakis C
        • Bugni JM.
        Diet-induced obesity promotes colon tumor development in azoxymethane-treated mice.
        PLoS One. 2013; 8: e60939
        • Man SM.
        Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis.
        Nat Rev Gastroenterol Hepatol. 2018; 15: 721-737
        • Fleischmann RM
        • Schechtman J
        • Bennett R
        • et al.
        Anakinra, a recombinant human interleukin-1 receptor antagonist (r-metHuIL-1ra), in patients with rheumatoid arthritis: a large, international, multicenter, placebo-controlled trial.
        Arthritis Rheum. 2003; 48: 927-934
        • Ma C
        • Yang D
        • Wang B
        • et al.
        Gasdermin D in macrophages restrains colitis by controlling cGAS-mediated inflammation.
        Sci Adv. 2020; 6: eaaz6717
        • Bulek K
        • Zhao J
        • Liao Y
        • et al.
        Epithelial-derived gasdermin D mediates nonlytic IL-1beta release during experimental colitis.
        J Clin Invest. 2020; 130: 4218-4234
        • Gao H
        • Cao M
        • Yao Y
        • et al.
        dysregulated microbiota-driven gasdermin D activation promotes colitis development by mediating IL-18 release.
        Front Immunol. 2021; 12750841
        • Tan G
        • Huang C
        • Chen J
        • Zhi F.
        HMGB1 released from GSDME-mediated pyroptotic epithelial cells participates in the tumorigenesis of colitis-associated colorectal cancer through the ERK1/2 pathway.
        J Hematol Oncol. 2020; 13: 149
        • Croes L
        • Fransen E
        • Hylebos M
        • et al.
        Determination of the potential tumor-suppressive effects of gsdme in a chemically induced and in a genetically modified intestinal cancer mouse model.
        Cancers (Basel). 2019; 11: 1214