Advertisement

Pin1 and Alzheimer's disease

Published:September 22, 2022DOI:https://doi.org/10.1016/j.trsl.2022.09.003

      ABSTRACT

      Alzheimer's disease (AD) is an immense and growing public health crisis. Despite over 100 years of investigation, the etiology remains elusive and therapy ineffective. Despite current gaps in knowledge, recent studies have identified dysfunction or loss-of-function of Pin1, a unique cis-trans peptidyl prolyl isomerase, as an important step in AD pathogenesis. Here I review the functionality of Pin1 and its role in neurodegeneration.

      Abbreviations:

      AD (Alzheimer's disease), APP (amyloid precursor protein), APLP1 and 2 (amyloid precursor like protein 1 and 2), ATR (ataxia telangiectasia and Rad3-related), NFT (neurofibrillary tangle), NIMA-1 (Never in Mitosis Associated), PDK (proline-directed kinases), PHF (paired helical filaments), RSK2 (ribosomal S6 kinase 2)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Glenner G.G.
        • Wong C.W.
        Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein.
        Biochem Biophys Res Commun. 1984; 122: 1131-1135
        • Citron M.
        • Oltersdorf T
        • Haass C
        • et al.
        Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production.
        Nature. 1992; 360: 672-674
        • Kang J.
        • Lemaire HG
        • Unterbeck A
        • et al.
        The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor.
        Nature. 1987; 325: 733-736
        • de Sauvage F.
        • Octave J.N.
        A novel mRNA of the A4 amyloid precursor gene coding for a possibly secreted protein.
        Science. 1989; 245: 651-653
        • Tanzi R.E.
        • McClatchey AI
        • Lamperti ED
        • Villa-Komaroff L
        • Gusella JF
        • Neve RL
        Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease.
        Nature. 1988; 331: 528-530
        • Walsh D.M.
        • Minogue A.M.
        • Sala Frigerio C
        • Fadeeva J.V.
        • Wasco W
        • Selkoe D.J.
        The APP family of proteins: similarities and differences.
        Biochem Soc Trans. 2007; 35 (Pt): 416-420
        • Banati R.B.
        • Gehrmann J.
        • Mönning U
        • Czech C.
        • Beyreuther K
        • Kreutzberg G.W.
        Amyloid precursor protein (APP) as a microglial acute phase protein.
        Neuropathol Appl Neurobiol. 1994; 20: 194-195
        • Liu C.C.
        • Kanekiyo T.
        • Xu H.
        • Bu G.
        Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy.
        Nat Rev Neurol. 2013; 9: 106-118
        • Rumble B.
        • Retallack R.
        • Hilbich C.
        • et al.
        Amyloid A4 protein and its precursor in Down’s syndrome and Alzheimer’s disease.
        N Engl J Med. 1989; 320: 1446-1452
        • Citron M.
        • Westaway D.
        • Xia W.
        • et al.
        Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice.
        Nat Med. 1997; 3: 67-72
        • Molgaard C.A.
        • Stanford E.P.
        • Morton D.J.
        • Ryden L.A.
        • Schubert K.R.
        • Golbeck A.L.
        Epidemiology of head trauma and neurocognitive impairment in a multi-ethnic population.
        Neuroepidemiology. 1990; 9: 233-242
        • Hanes S.D.
        Prolyl isomerases in gene transcription.
        Biochim Biophys Acta. 2015; 1850: 2017-2034
        • Lu K.P.
        • Hanes S.D.
        • Hunter T.
        A human peptidyl-prolyl isomerase essential for regulation of mitosis.
        Nature. 1996; 380: 544-547
        • Maleszka R.
        • Hanes S.D.
        • Hackett R.L.
        • de Couet H.G.
        • Miklos G.L.
        The Drosophila melanogaster dodo (dod) gene, conserved in humans, is functionally interchangeable with the ESS1 cell division gene of Saccharomyces cerevisiae.
        Proc Natl Acad Sci U S A,. 1996; 93: 447-451
        • Ng C.A.
        • Kato Y.
        • Tanokura M
        • Brownlee R.T.C.
        Structural characterisation of PinA WW domain and a comparison with other group IV WW domains, Pin1 and Ess1.
        Biochim Biophys Acta. 2008; 1784: 1208-1214
        • Lu P.J.
        • Zhou X.Z.
        • Shen M.
        • Lu K.P.
        Function of WW domains as phosphoserine- or phosphothreonine-binding modules.
        Science. 1999; 283: 1325-1328
        • Shen Z.J.
        • Esnault S.
        • Malter J.S.
        The peptidyl-prolyl isomerase Pin1 regulates the stability of granulocyte-macrophage colony-stimulating factor mRNA in activated eosinophils.
        Nat Immunol. 2005; 6: 1280-1287
        • Lu K.P.
        • Zhou X.Z.
        The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease.
        Nat Rev Mol Cell Biol. 2007; 8: 904-916
        • Kasahara K.
        Physiological function of FKBP12, a primary target of rapamycin/FK506: a newly identified role in transcription of ribosomal protein genes in yeast.
        Curr Genet. 2021; 67: 383-388
        • Ubersax J.A.
        • Ferrell Jr, J.E.
        Mechanisms of specificity in protein phosphorylation.
        Nat Rev Mol Cell Biol. 2007; 8: 530-541
        • Hooper C.
        • Killick R.
        • Lovestone S.
        The GSK3 hypothesis of Alzheimer's disease.
        J Neurochem. 2008; 104: 1433-1439
        • Wulf G.
        • Finn G.
        • Suizu F
        • Lu K.P.
        Phosphorylation-specific prolyl isomerization: is there an underlying theme?.
        Nat Cell Biol. 2005; 7: 435-441
        • Ping L.
        • Kundinger SR, Duong DM, et al
        Global quantitative analysis of the human brain proteome and phosphoproteome in Alzheimer’s disease.
        Sci Data. 2020; 7: 315
        • Bai B.
        • Wang X, Yuxin L, et al
        Deep multilayer brain proteomics identifies molecular networks in Alzheimer’s disease progression.
        Neuron. 2020; 105: 975-991.e7
        • Igarashi M.
        • Okuda S.
        Evolutionary analysis of proline-directed phosphorylation sites in the mammalian growth cone identified using phosphoproteomics.
        Mol Brain. 2019; 12: 53
        • Schiene-Fischer C.
        • Aumuller T.
        • Fischer G.
        Peptide bond cis/trans isomerases: a biocatalysis perspective of conformational dynamics in proteins.
        Top Curr Chem. 2013; 328: 35-67
        • Zhou X.Z.
        • Kops O, Werner A, et al
        Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins.
        Mol Cell. 2000; 6: 873-883
        • Cho J.H.
        • Johnson G.V.
        Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau's ability to bind and stabilize microtubules.
        J Neurochem. 2004; 88: 349-358
        • Kondo A.
        • Shahpasand K, Mannix R, et al
        Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy.
        Nature. 2015; 523: 431-436
        • Karikari T.K.
        • Ashton NJ, Brinkmalm G, et al
        Blood phospho-tau in Alzheimer disease: analysis, interpretation, and clinical utility.
        Nat Rev Neurol. 2022; : 400-418
        • Esnault S.
        • Shen Z.J.
        • Malter J.S.
        Pinning down signaling in the immune system: the role of the peptidyl-prolyl isomerase Pin1 in immune cell function.
        Crit Rev Immunol. 2008; 28: 45-60
        • Westmark P.R.
        • Westmark CJ, Wang S, et al
        Pin1 and PKMzeta sequentially control dendritic protein synthesis.
        Sci Signal. 2010; 3: ra18
        • Sosa L.J.
        • Malter JS, Hu J, et al
        Protein interacting with NIMA (never in mitosis A)-1 regulates axonal growth cone adhesion and spreading through myristoylated alanine-rich C kinase substrate isomerization.
        J Neurochem. 2016; 137: 744-755
        • Stallings N.R.
        • O’Neal MA, Hu J, Kavalali ET, Bezprozvanny I, Malter JS
        Pin1 mediates Abeta42-induced dendritic spine loss.
        Sci Signal. 2018; 11
        • Lu Z.
        • Hunter T.
        Prolyl isomerase Pin1 in cancer.
        Cell Res. 2014; 24: 1033-1049
        • Wulf G
        • Ryo A.
        • Liou Y-C
        • Lu KP
        The prolyl isomerase Pin1 in breast development and cancer.
        Breast Cancer Res. 2003; 5: 76-82
        • Ryo A.
        • Liou Y-C
        • Lu KP
        • Wulf G
        Prolyl isomerase Pin1: a catalyst for oncogenesis and a potential therapeutic target in cancer.
        J Cell Sci. 2003; 116 (Pt): 773-783
        • Chen Y.
        • Wu YR
        • Yang YH
        • et al.
        Prolyl isomerase Pin1: a promoter of cancer and a target for therapy.
        Cell Death Dis. 2018; 9: 883
        • Lu P.J.
        • Zhou XZ
        • Liou Y-C
        • Noel JP
        • Lu KP
        Critical role of WW domain phosphorylation in regulating phosphoserine binding activity and Pin1 function.
        J Biol Chem. 2002; 277: 2381-2384
        • Lee Y.C.
        • Que J
        • Chen Y-C
        • et al.
        Pin1 acts as a negative regulator of the G2/M transition by interacting with the Aurora-A-Bora complex.
        J Cell Sci. 2013; 126 (Pt): 4862-4872
        • Chen D.
        • Wang L.
        • Lee T.H.
        Post-translational Modifications of the Peptidyl-Prolyl Isomerase Pin1.
        Front Cell Dev Biol. 2020; 8: 129
        • Lee T.H.
        • Chen C-H
        • Suizu F
        • et al.
        Death-associated protein kinase 1 phosphorylates Pin1 and inhibits its prolyl isomerase activity and cellular function.
        Mol Cell. 2011; 42: 147-159
        • Xu N.
        • Tochio N
        • Wang J
        • et al.
        The C113D mutation in human Pin1 causes allosteric structural changes in the phosphate binding pocket of the PPIase domain through the tug of war in the dual-histidine motif.
        Biochemistry. 2014; 53: 5568-5578
        • Chen D.
        • Zhou X.Z.
        • Lee T.H.
        Death-associated protein kinase 1 as a promising drug target in cancer and Alzheimer's disease.
        Recent Pat Anticancer Drug Discov. 2019; 14: 144-157
        • Chen C.H.
        • Li W
        • Sultana R
        • et al.
        Pin1 cysteine-113 oxidation inhibits its catalytic activity and cellular function in Alzheimer’s disease.
        Neurobiol Dis. 2015; 76: 13-23
        • Choudhary C.
        • Kumar C
        • Gnad F
        • et al.
        Lysine acetylation targets protein complexes and co-regulates major cellular functions.
        Science. 2009; 325: 834-840
        • Chen C.H.
        • Chang C-C
        • Lee TH
        • et al.
        SENP1 deSUMOylates and regulates Pin1 protein activity and cellular function.
        Cancer Res. 2013; 73: 3951-3962
        • Akimov V.
        • Barrio-Hernandez I
        • Hansen SVF
        • et al.
        UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites.
        Nat Struct Mol Biol. 2018; 25: 631-640
        • Larsen S.C.
        • Sylvestersen KB, Mund A, et al
        Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells.
        Sci Signal. 2016; 9: rs9
        • Lu P.J.
        • Wulf G, Zhou XZ, Davies P, Lu KP
        The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein.
        Nature. 1999; 399: 784-788
        • Illenberger S.
        • Zheng-Fischhöfer Q, Preuss U, et al
        The endogenous and cell cycle-dependent phosphorylation of tau protein in living cells: implications for Alzheimer’s disease.
        Mol Biol Cell. 1998; 9: 1495-1512
        • Smet C.
        • Sambo A-V, Wieruszeski J-M, et al
        The peptidyl prolyl cis/trans-isomerase Pin1 recognizes the phospho-Thr212-Pro213 site on Tau.
        Biochemistry. 2004; 43: 2032-2040
        • Bulbarelli A.
        • Lonati E, Cazzaniga E, Gregori M, Masserini M
        Pin1 affects Tau phosphorylation in response to Abeta oligomers.
        Mol Cell Neurosci. 2009; 42: 75-80
        • Galas M.C.
        • Dourlen P, Bégard S, et al
        The peptidylprolyl cis/trans-isomerase Pin1 modulates stress-induced dephosphorylation of Tau in neurons. Implication in a pathological mechanism related to Alzheimer disease.
        J Biol Chem. 2006; 281: 19296-19304
        • Arendt T.
        • Brückner MK, Gertz HJ, Marcova L
        Cortical distribution of neurofibrillary tangles in Alzheimer’s disease matches the pattern of neurons that retain their capacity of plastic remodelling in the adult brain.
        Neuroscience. 1998; 83: 991-1002
        • Holzer M.
        • Holzapfel HP, Zedlick D, Brückner MK, Arendt T
        Abnormally phosphorylated tau protein in Alzheimer’s disease: heterogeneity of individual regional distribution and relationship to clinical severity.
        Neuroscience. 1994; 63: 499-516
        • Holzer M.
        • Gärtner U, Stöbe A, et al
        Inverse association of Pin1 and tau accumulation in Alzheimer’s disease hippocampus.
        Acta Neuropathol. 2002; 104: 471-481
        • Liou Y.C.
        • Sun A, Ryo A, et al
        Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration.
        Nature. 2003; 424: 556-561
        • Fujimori F.
        • Takahashi K, Uchida C, Uchida T
        Mice lacking Pin1 develop normally, but are defective in entering cell cycle from G(0) arrest.
        Biochem Biophys Res Commun. 1999; 265: 658-663
        • Ishihara T.
        • Hong M, Zhang B, et al
        Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform.
        Neuron. 1999; 24: 751-762
        • Lewis J.
        • McGowan E, Rockwood J, et al
        Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein.
        Nat Genet. 2000; 25: 402-405
        • Atchison F.W.
        • Means A.R.
        Spermatogonial depletion in adult Pin1-deficient mice.
        Biol Reprod. 2003; 69: 1989-1997
        • Atchison F.W.
        • Capel B.
        • Means A.R.
        Pin1 regulates the timing of mammalian primordial germ cell proliferation.
        Development. 2003; 130: 3579-3586
        • Hsiao K.
        • Chapman P, Nilsen S, et al
        Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice.
        Science. 1996; 274: 99-102
        • Irizarry M.C.
        • McNamara M, Fedorchak K, Hsiao K, Hyman BT
        APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1.
        J Neuropathol Exp Neurol. 1997; 56: 965-973
        • Lanz T.A.
        • Carter D.B.
        • Merchant K.M.
        Dendritic spine loss in the hippocampus of young PDAPP and Tg2576 mice and its prevention by the ApoE2 genotype.
        Neurobiol Dis. 2003; 13: 246-253
        • Jacobsen J.S.
        • Wu C-C, Redwine JM, et al
        Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease.
        Proc Natl Acad Sci U S A,. 2006; 103: 5161-5166
        • Pastorino L.
        • Sun A, Lu P-J, et al
        The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production.
        Nature. 2006; 440: 528-534
        • Suzuki T.
        • Oishi M, Marshak DR, Czernik AJ, Nairn AC, Greengard P
        Cell cycle-dependent regulation of the phosphorylation and metabolism of the Alzheimer amyloid precursor protein.
        EMBO J. 1994; 13: 1114-1122
        • Oliveira J.
        • Costa M, Cachide de Almeida MS, da Cruz E Silva OAB, Henriques AG
        Protein phosphorylation is a key mechanism in Alzheimer’s disease.
        J Alzheimers Dis. 2017; 58: 953-978
        • Haass C.
        • Kaether C, Thinakaran G, Sisodia S
        Trafficking and proteolytic processing of APP.
        Cold Spring Harb Perspect Med. 2012; 2a006270
        • Pastorino L.
        • Ma SL, Balastik M, et al
        Alzheimer’s disease-related loss of Pin1 function influences the intracellular localization and the processing of AbetaPP.
        J Alzheimers Dis. 2012; 30: 277-297
        • Fisher C.L.
        • Resnick RJ, De S, et al
        Cyclic cis-locked phospho-dipeptides reduce entry of AbetaPP into amyloidogenic processing pathway.
        J Alzheimers Dis. 2017; 55: 391-410
        • Barbagallo A.P.
        • Weldon R, Tamayev R, et al
        Tyr(682) in the intracellular domain of APP regulates amyloidogenic APP processing in vivo.
        PLoS One. 2010; 5: e15503
        • Sano Y.
        • Nakaya T, Pedrini S, et al
        Physiological mouse brain Abeta levels are not related to the phosphorylation state of threonine-668 of Alzheimer’s APP.
        PLoS One. 2006; 1: e51
        • Ando K.
        • Iijima KI, Elliott JI, Kirino Y, Suzuki T
        Phosphorylation-dependent regulation of the interaction of amyloid precursor protein with Fe65 affects the production of beta-amyloid.
        J Biol Chem. 2001; 276: 40353-40361
        • Nakaya T.
        • Suzuki T.
        Role of APP phosphorylation in FE65-dependent gene transactivation mediated by AICD.
        Genes Cells. 2006; 11: 633-645
        • Gandy S.
        • Czernik A.J.
        • Greengard P.
        Phosphorylation of Alzheimer disease amyloid precursor peptide by protein kinase C and Ca2+/calmodulin-dependent protein kinase II.
        Proc Natl Acad Sci U S A,. 1988; 85: 6218-6221
        • Kim B.M.
        • You M-H, Chen C-H, Suh J, Tanzi E, Lee TH
        Inhibition of death-associated protein kinase 1 attenuates the phosphorylation and amyloidogenic processing of amyloid precursor protein.
        Hum Mol Genet. 2016; 25: 2498-2513
        • Buxbaum J.D.
        • Gandy SE, Cicchetti P, et al
        Processing of Alzheimer beta/A4 amyloid precursor protein: modulation by agents that regulate protein phosphorylation.
        Proc Natl Acad Sci U S A. 1990; 87: 6003-6006
        • Ma S.L.
        • Pastorino L, Zhen Zhou X, Lu KP
        Prolyl isomerase Pin1 promotes amyloid precursor protein (APP) turnover by inhibiting glycogen synthase kinase-3beta (GSK3beta) activity: novel mechanism for Pin1 to protect against Alzheimer disease.
        J Biol Chem. 2012; 287: 6969-6973
        • Shimizu T.
        • Kanai K, Sugawara Y, Uchida C, Uchida T
        Prolyl isomerase Pin1 directly regulates Calcium/Calmodulin-dependent Protein Kinase II activity in mouse brains.
        Front Pharmacol. 2018; 9: 1351
        • Abrahamsen H.
        • O’Neill AK, Kannan N, et al
        Peptidyl-prolyl isomerase Pin1 controls down-regulation of conventional protein kinase C isozymes.
        J Biol Chem. 2012; 287: 13262-13278
        • Selkoe D.J.
        Toward a comprehensive theory for Alzheimer's disease. Hypothesis: Alzheimer's disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein.
        Ann N Y Acad Sci. 2000; 924: 17-25
        • Hardy J.
        • Selkoe D.J.
        The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics.
        Science. 2002; 297: 353-356
        • Scheff S.W.
        • Price DA, Schmitt FA, DeKosky ST, Mufson EJ
        Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment.
        Neurology. 2007; 68: 1501-1508
        • Shankar G.M.
        • Li S, Mehta TH, et al
        Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory.
        Nat Med. 2008; 14: 837-842
        • Mattson M.P.
        • Barger SW, Cheng B, Lieberburg I, Smith-Swintosky VL, Rydel RE
        beta-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease.
        Trends Neurosci. 1993; 16: 409-414
        • Behl C.
        • Davis JB, Lesley R, Schubert D
        Hydrogen peroxide mediates amyloid beta protein toxicity.
        Cell. 1994; 77: 817-827
        • Harris M.E.
        • Hensley K, Butterfield DA, Leedle RA, Carney JM
        Direct evidence of oxidative injury produced by the Alzheimer’s beta-amyloid peptide (1-40) in cultured hippocampal neurons.
        Exp Neurol. 1995; 131: 193-202
        • Cheignon C.
        • Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F
        Oxidative stress and the amyloid beta peptide in Alzheimer’s disease.
        Redox Biol. 2018; 14: 450-464
        • Sultana R.
        • Boyd-Kimball D, Poon HF, et al
        Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD.
        Neurobiol Aging. 2006; 27: 1564-1576
        • Butterfield D.A.
        • Poon HF, St Clair D, et al
        Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer’s disease.
        Neurobiol Dis. 2006; 22: 223-232
        • O'Neal M.A.
        • Stallings N.R.
        • Malter J.S.
        Alzheimer's Disease, Dendritic Spines, and Calcineurin Inhibitors: A New Approach?.
        ACS Chem Neurosci. 2018; 9: 1233-1234
        • Cho Y.S.
        • Park SY, Kim DJ, et al
        TPA-induced cell transformation provokes a complex formation between Pin1 and 90 kDa ribosomal protein S6 kinase 2.
        Mol Cell Biochem. 2012; 367: 85-92
        • Kim G.
        • Khanal P, Kim JY, et al
        COT phosphorylates prolyl-isomerase Pin1 to promote tumorigenesis in breast cancer.
        Mol Carcinog. 2015; 54: 440-448
        • Ando K.
        • Dourlen P, Sambo A-V, et al
        Tau pathology modulates Pin1 post-translational modifications and may be relevant as biomarker.
        Neurobiol Aging. 2013; 34: 757-769
        • Eckerdt F.
        • Yuan J, Saxena K, et al
        Polo-like kinase 1-mediated phosphorylation stabilizes Pin1 by inhibiting its ubiquitination in human cells.
        J Biol Chem. 2005; 280: 36575-36583
        • Rangasamy V.
        • Mishra R, Sondarva G, et al
        Mixed-lineage kinase 3 phosphorylates prolyl-isomerase Pin1 to regulate its nuclear translocation and cellular function.
        Proc Natl Acad Sci U S A,. 2012; 109: 8149-8154
        • Song B.
        • Davis K, Liu XS, Lee H-G, Smith M, Liu X
        Inhibition of Polo-like kinase 1 reduces beta-amyloid-induced neuronal cell death in Alzheimer’s disease.
        Aging (Albany NY). 2011; 3: 846-851
        • Zhou F.
        • Xu Y.
        • Hou X.Y.
        MLK3-MKK3/6-P38MAPK cascades following N-methyl-D-aspartate receptor activation contributes to amyloid-beta peptide-induced apoptosis in SH-SY5Y cells.
        J Neurosci Res. 2014; 92: 808-817
        • Malleret G.
        • Haditsch U, Genoux D, et al
        Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin.
        Cell. 2001; 104: 675-686
        • Mansuy I.M.
        • Mayford M, Jacob B, Kandel ER, Bach ME
        Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory.
        Cell. 1998; 92: 39-49
        • Reese L.C.
        • Zhang W, Dineley KT, Kayed R, Taglialatela G
        Selective induction of calcineurin activity and signaling by oligomeric amyloid beta.
        Aging Cell. 2008; 7: 824-835
        • Reese L.C.
        • Laezza F, Woltjer R, Taglialatela G
        Dysregulated phosphorylation of Ca(2+) /calmodulin-dependent protein kinase II-alpha in the hippocampus of subjects with mild cognitive impairment and Alzheimer’s disease.
        J Neurochem. 2011; 119: 791-804
        • Taglialatela G.
        • Rastellini C.
        • Cicalese L.
        Reduced Incidence of Dementia in Solid Organ Transplant Patients Treated with Calcineurin Inhibitors.
        J Alzheimers Dis. 2015; 47: 329-333
        • Mansuy I.M.
        Calcineurin in memory and bidirectional plasticity.
        Biochem Biophys Res Commun. 2003; 311: 1195-1208
        • Rozkalne A.
        • Hyman B.T.
        • Spires-Jones T.L.
        Calcineurin inhibition with FK506 ameliorates dendritic spine density deficits in plaque-bearing Alzheimer model mice.
        Neurobiol Dis. 2011; 41: 650-654
        • Dineley K.T.
        • Hogan D, Zhang W-R, Taglialatela G
        Acute inhibition of calcineurin restores associative learning and memory in Tg2576 APP transgenic mice.
        Neurobiol Learn Mem. 2007; 88: 217-224
        • Cavallucci V.
        • Berretta N, Nobili A, Nisticò R, Mercuri NB, D’Amelio M
        Calcineurin inhibition rescues early synaptic plasticity deficits in a mouse model of Alzheimer’s disease.
        Neuromolecular Med. 2013; 15: 541-548
        • Cottrell J.R.
        • Levenson JM, Kim SH, et al
        Working memory impairment in calcineurin knock-out mice is associated with alterations in synaptic vesicle cycling and disruption of high-frequency synaptic and network activity in prefrontal cortex.
        J Neurosci. 2013; 33: 10938-10949
        • Zeng H.
        • Chattarji S, Barbarosie M, et al
        Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory.
        Cell. 2001; 107: 617-629
        • Mi Z.
        • Abrahamson EE, Ryu AY, et al
        Loss of precuneus dendritic spines immunopositive for spinophilin is related to cognitive impairment in early Alzheimer’s disease.
        Neurobiol Aging. 2017; 55: 159-166
        • Counts S.E.
        • He B, Nadeem M, Wuu J, Scheff SW, Mufson EJ
        Hippocampal drebrin loss in mild cognitive impairment.
        Neurodegener Dis. 2012; 10: 216-219
        • DeKosky S.T.
        • Scheff S.W.
        Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity.
        Ann Neurol. 1990; 27: 457-464
        • Terry R.D.
        • Masliah E, Salmon DP, et al
        Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment.
        Ann Neurol. 1991; 30: 572-580
        • Oh J.
        • Malter J.S.
        Pin1-FADD interactions regulate Fas-mediated apoptosis in activated eosinophils.
        J Immunol. 2013; 190: 4937-4945
        • Shen Z.J.
        • Esnault S, Schinzel A, Borner C, Malter JS
        The peptidyl-prolyl isomerase Pin1 facilitates cytokine-induced survival of eosinophils by suppressing Bax activation.
        Nat Immunol. 2009; 10: 257-265
        • Dourlen P.
        • Ando K, Hamdane M, Begard S, Buée L, Galas MC
        The peptidyl prolyl cis/trans isomerase Pin1 downregulates the Inhibitor of Apoptosis Protein Survivin.
        Biochim Biophys Acta. 2007; 1773: 1428-1437
        • Terry R.D.
        Cell death or synaptic loss in Alzheimer disease.
        J Neuropathol Exp Neurol. 2000; 59: 1118-1119
        • Hong H.S.
        • Hwang J-Y, Son S-M, et al
        FK506 reduces amyloid plaque burden and induces MMP-9 in AbetaPP/PS1 double transgenic mice.
        J Alzheimers Dis. 2010; 22: 97-105
        • Selkoe D.J.
        Alzheimer's disease is a synaptic failure.
        Science. 2002; 298: 789-791
        • Babri S.
        • Amani M, Mohaddes G, Alihemmati A, Ebrahimi H
        Effect of aggregated beta-Amyloid (1-42) on synaptic plasticity of Hippocampal Dentate Gyrus Granule cells in vivo.
        Bioimpacts. 2012; 2: 189-194
        • Selkoe D.J.
        Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior.
        Behav Brain Res. 2008; 192: 106-113
        • Kelleher 3rd, R.J.
        • Govindarajan A.
        • Tonegawa S.
        Translational regulatory mechanisms in persistent forms of synaptic plasticity.
        Neuron. 2004; 44: 59-73
        • Westmark C.J.
        • Malter J.S.
        FMRP mediates mGluR5-dependent translation of amyloid precursor protein.
        PLoS Biol. 2007; 5: e52
        • Todd P.K.
        • Mack K.J.
        • Malter J.S.
        The fragile X mental retardation protein is required for type-I metabotropic glutamate receptor-dependent translation of PSD-95.
        Proc Natl Acad Sci U S A,. 2003; 100: 14374-14378
        • Xu L.
        • Ren Z, Chow FE, et al
        Pathological role of Peptidyl-Prolyl Isomerase Pin1 in the disruption of synaptic plasticity in Alzheimer’s disease.
        Neural Plast. 2017; (2017)3270725
        • Hoeffer C.A.
        • Tang W, Wong H, et al
        Removal of FKBP12 enhances mTOR-Raptor interactions, LTP, memory, and perseverative/repetitive behavior.
        Neuron. 2008; 60: 832-845
        • Mouri A.
        • Noda Y, Shimizu S, Tsujimoto Y, Nabeshima T
        The role of cyclophilin D in learning and memory.
        Hippocampus. 2010; 20: 293-304
        • Du H.
        • Guo L, Zhang W, Rydzewska M, Yan S
        Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model.
        Neurobiol Aging. 2011; 32: 398-406
        • Govindarajan A.
        • Israely I, Huang S-Y, Tonegawa S
        The dendritic branch is the preferred integrative unit for protein synthesis-dependent LTP.
        Neuron. 2011; 69: 132-146
        • Cao G.
        • Harris K.M.
        Developmental regulation of the late phase of long-term potentiation (L-LTP) and metaplasticity in hippocampal area CA1 of the rat.
        J Neurophysiol. 2012; 107: 902-912
        • Antonelli R.
        • De Filippo R, Middei S, et al
        Pin1 modulates the synaptic content of NMDA receptors via Prolyl-Isomerization of PSD-95.
        J Neurosci. 2016; 36: 5437-5447
        • Delgado J.Y.
        • Nall D.
        • Selvin P.R.
        Pin1 binding to Phosphorylated PSD-95 regulates the number of functional excitatory synapses.
        Front Mol Neurosci. 2020; 13: 10
        • He D.
        • Xu H, Zhang H, et al
        Disruption of the IL-33-ST2-AKT signaling axis impairs neurodevelopment by inhibiting microglial metabolic adaptation and phagocytic function.
        Immunity. 2022; 55 (e9): 159-173
        • Liang C.S.
        • Su KP, Tsai CL, et al
        The role of interleukin-33 in patients with mild cognitive impairment and Alzheimer’s disease.
        Alzheimers Res Ther. 2020; 12: 86
        • Fu A.K.
        • Hung K-W, Yuen MYF, et al
        IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline.
        Proc Natl Acad Sci U S A,. 2016; 113: E2705-E2713
        • Stewart C.R.
        • Stuart LM, Wilkinson K, et al
        CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer.
        Nat Immunol. 2010; 11: 155-161
        • Sheedy F.J.
        • Grebe A, Rayner KJ, et al
        CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation.
        Nat Immunol. 2013; 14: 812-820
        • Griffin W.S.
        • Stanley LC, Ling C, et al
        Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease.
        Proc Natl Acad Sci U S A,. 1989; 86: 7611-7615
        • Fillit H.
        • Ding WH, Buee L, Kalman J, Altstiel L, Lawlor B, Wolf-Klein G
        Elevated circulating tumor necrosis factor levels in Alzheimer’s disease.
        Neurosci Lett. 1991; 129: 318-320
        • Bamberger M.E.
        • Harris ME, McDonald DR, Husemann J, Landreth GE
        A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation.
        J Neurosci. 2003; 23: 2665-2674
        • Barger S.W.
        • Basile A.S.
        Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function.
        J Neurochem. 2001; 76: 846-854
        • Bachiller S.
        • Jiménez-Ferrer I, Paulus A, et al
        Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response.
        Front Cell Neurosci. 2018; 12: 488
        • Heppner F.L.
        • Ransohoff R.M.
        • Becher B.
        Immune attack: the role of inflammation in Alzheimer disease.
        Nat Rev Neurosci. 2015; 16: 358-372
        • Morimoto K.
        • Horio J, Satoh H, et al
        Expression profiles of cytokines in the brains of Alzheimer’s disease (AD) patients compared to the brains of non-demented patients with and without increasing AD pathology.
        J Alzheimers Dis. 2011; 25: 59-76
        • Ivanov P.
        • Anderson P.
        Post-transcriptional regulatory networks in immunity.
        Immunol Rev. 2013; 253: 253-272
        • Pullmann R.
        • Ho Kim H, Abdelmohsen K, et al
        Analysis of turnover and translation regulatory RNA-binding protein expression through binding to cognate mRNAs.
        Mol Cell Biol. 2007; 27: 6265-6278
        • Nechama M.
        • Kwon J, Wei S, et al
        The IL-33-PIN1-IRAK-M axis is critical for type 2 immunity in IL-33-induced allergic airway inflammation.
        Nat Commun. 2018; 9: 1603
        • Tun-Kyi A.
        • Finn G, Greenwood A, et al
        Essential role for the prolyl isomerase Pin1 in Toll-like receptor signaling and type I interferon-mediated immunity.
        Nat Immunol. 2011; 12: 733-741
        • Caput D.
        • Beutler B, Hartog K, Thayer R, Brown-Shimer S, Cerami A
        Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators.
        Proc Natl Acad Sci U S A,. 1986; 83: 1670-1674
        • Shaw G.
        • Kamen R.
        A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation.
        Cell. 1986; 46: 659-667
        • Hentze M.W.
        • Keim S, Papadopoulos P, et al
        Cloning, characterization, expression, and chromosomal localization of a human ferritin heavy-chain gene.
        Proc Natl Acad Sci U S A,. 1986; 83: 7226-7230
        • Esnault S.
        • Braun RK, Shen Z-J, et al
        Pin1 modulates the type 1 immune response.
        PLoS One. 2007; 2: e226
        • Shen Z.J.
        • Malter J.S.
        Regulation of AU-rich element RNA binding proteins by Phosphorylation and the Prolyl Isomerase Pin1.
        Biomolecules. 2015; 5: 412-434
        • Shen Z.J.
        • Hu J, Kashi V, Bochkov YA, Gern JE, Malter JS
        TLR-7 stress signaling in differentiating and mature eosinophils is mediated by the Prolyl Isomerase Pin1.
        J Immunol. 2018; 201: 3503-3513
        • Shen Z.J.
        • Malter J.S.
        Eosinophils, Pin1 and the response to respiratory viral infection and allergic stimuli.
        Crit Rev Immunol. 2019; 39: 135-149
        • Boussetta T.
        • Gougerot-Pocidalo M-A, Hayem G, et al
        The prolyl isomerase Pin1 acts as a novel molecular switch for TNF-alpha-induced priming of the NADPH oxidase in human neutrophils.
        Blood. 2010; 116: 5795-5802
        • Ryo A.
        • Suizu F, Yoshida Y, et al
        Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA.
        Mol Cell. 2003; 12: 1413-1426
        • Atkinson G.P.
        • Nozell SE, Harrison DK, Stonecypher MS, Chen D, Benveniste EN
        The prolyl isomerase Pin1 regulates the NF-kappaB signaling pathway and interleukin-8 expression in glioblastoma.
        Oncogene. 2009; 28: 3735-3745
        • Lau S.F.
        • Fu A.K.Y.
        • Ip N.Y.
        Cytokine signaling convergence regulates the microglial state transition in Alzheimer's disease.
        Cell Mol Life Sci. 2021; 78: 4703-4712
        • Su J.H.
        • Zhao M, Anderson AJ, Srinivasan A, Cotman CW
        Activated caspase-3 expression in Alzheimer’s and aged control brain: correlation with Alzheimer pathology.
        Brain Res. 2001; 898: 350-357
        • Brokaw D.L.
        • Piras IS, Mastroeni D, et al
        Cell death and survival pathways in Alzheimer’s disease: an integrative hypothesis testing approach utilizing -omic data sets.
        Neurobiol Aging. 2020; 95: 15-25
        • Galluzzi L.
        • Vitale I, Aaronson SA, et al
        Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.
        Cell Death Differ. 2018; 25: 486-541
        • Wahl G.M.
        • Carr A.M.
        The evolution of diverse biological responses to DNA damage: insights from yeast and p53.
        Nat Cell Biol. 2001; 3: E277-E286
        • Dougherty M.K.
        • Müller J, Ritt DA, et al
        Regulation of Raf-1 by direct feedback phosphorylation.
        Mol Cell. 2005; 17: 215-224
        • Cheng C.W.
        • Chow AKM, Pang R, Fok EWS, Kwong Y-L, Tse E
        PIN1 inhibits apoptosis in hepatocellular carcinoma through modulation of the antiapoptotic function of survivin.
        Am J Pathol. 2013; 182: 765-775
        • Min S.H.
        • Lau AW, Lee TH, et al
        Negative regulation of the stability and tumor suppressor function of Fbw7 by the Pin1 prolyl isomerase.
        Mol Cell. 2012; 46: 771-783
        • Makinwa Y.
        • Musich P.R.
        • Zou Y.
        Phosphorylation-dependent Pin1 isomerization of ATR: its role in regulating ATR's anti-apoptotic function at mitochondria, and the implications in cancer.
        Front Cell Dev Biol. 2020; 8: 281
        • Wang S.C.
        • Hu X.M.
        • Xiong K.
        The regulatory role of Pin1 in neuronal death.
        Neural Regen Res. 2023; 18: 74-80
        • Dong Y.
        • Hanqiao Y, Xueqi L, et al
        Hyperphosphorylated tau mediates neuronal death by inducing necroptosis and inflammation in Alzheimer’s disease.
        J Neuroinflammation. 2022; 19: 205
        • Del Rosario J.S.
        • Feldmann KG, Ahmed T, et al
        Death Associated Protein Kinase (DAPK) -mediated neurodegenerative mechanisms in nematode excitotoxicity.
        BMC Neurosci. 2015; 16: 25
        • Wang S.
        • Liao L, Wang M, et al
        Pin1 promotes regulated necrosis induced by glutamate in rat retinal neurons via CAST/Calpain2 pathway.
        Front Cell Neurosci. 2017; 11: 425
        • Braak H.
        • Braak E.
        • Bohl J.
        Staging of Alzheimer-related cortical destruction.
        Eur Neurol. 1993; 33: 403-408
        • Braak H.
        • Braak E.
        Neuropathological stageing of Alzheimer-related changes.
        Acta Neuropathol. 1991; 82: 239-259
        • Segat L.
        • Pontillo A, Annoni G, et al
        PIN1 promoter polymorphisms are associated with Alzheimer’s disease.
        Neurobiol Aging. 2007; 28: 69-74
        • Ma S.L.
        • Tang NLS, Tam CWC. et al
        A PIN1 polymorphism that prevents its suppression by AP4 associates with delayed onset of Alzheimer’s disease.
        Neurobiol Aging. 2012; 33: 804-813
        • Park J.S.
        • Lee J, Jung ES, et al
        Brain somatic mutations observed in Alzheimer’s disease associated with aging and dysregulation of tau phosphorylation.
        Nat Commun. 2019; 10: 3090
        • Okamoto M.
        • Takayama K, Shimizu T, Ishida K, Takahashi O, Furuya T
        Identification of death-associated protein kinases inhibitors using structure-based virtual screening.
        J Med Chem. 2009; 52: 7323-7327
        • Gan C.L.
        • Zou Y, Xia Y, et al
        Inhibition of death-associated protein Kinase 1 protects against epileptic seizures in mice.
        Int J Biol Sci. 2021; 17: 2356-2366
        • Xu L.Z.
        • Li B.Q.
        • Jia J.P.
        DAPK1: a novel pathology and treatment target for Alzheimer's disease.
        Mol Neurobiol. 2019; 56: 2838-2844
        • Audard J.
        • Godet T, Blondonnet R, et al
        Inhibition of the receptor for advanced glycation end-products in acute respiratory distress syndrome: a randomised laboratory trial in piglets.
        Sci Rep. 2019; 9: 9227
        • Mullard A.
        Anti-tau antibody failures stack up.
        Nat Rev Drug Discov. 2021; 20: 888
        • van Dyck C.H.
        Anti-amyloid-beta monoclonal antibodies for Alzheimer's disease: pitfalls and promise.
        Biol Psychiatry. 2018; 83: 311-319