Advertisement

Clonal hematopoiesis and bone marrow inflammation

Published:November 05, 2022DOI:https://doi.org/10.1016/j.trsl.2022.11.004

      Abstract

      Clonal hematopoiesis (CH) occurs in hematopoietic stem cells with increased risks of progressing to hematologic malignancies. CH mutations are predominantly found in aged populations and correlate with an increased incidence of cardiovascular and other diseases. Increased lines of evidence demonstrate that CH mutations are closely related to the inflammatory bone marrow microenvironment. In this review, we summarize the recent advances in this topic starting from the discovery of CH and its mutations. We focus on the most commonly mutated and well-studied genes in CH and their contributions to the innate immune responses and inflammatory signaling, especially in the hematopoietic cells of bone marrow. We also aimed to discuss the interrelationship between inflammatory bone marrow microenvironment and CH mutations. Finally, we provide our perspectives on the challenges in the field and possible future directions to help understand the pathophysiology of CH.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nombela-Arrieta C.
        • Manz M.G.
        Quantification and three-dimensional microanatomical organization of the bone marrow.
        Blood Adv. 2017; 1: 407-416
        • Sender R.
        • Milo R.
        The distribution of cellular turnover in the human body.
        Nat Med. 2021; 27: 45-48
        • Rowley J.D.
        Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining.
        Nature. 1973; 243: 290-293
        • Fey M.F.
        • Liechti-Gallati S.
        • von Rohr A.
        • et al.
        Clonality and X-inactivation patterns in hematopoietic cell populations detected by the highly informative M27 beta DNA probe.
        Blood. 1994; 83: 931-938
        • Martincorena I.
        • Roshan A.
        • Gerstung M.
        • et al.
        Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin.
        Science. 2015; 348: 880-886
        • Martincorena I.
        • Fowler J.C.
        • Wabik A.
        • et al.
        Somatic mutant clones colonize the human esophagus with age.
        Science. 2018; 362: 911-917
        • Yokoyama A.
        • Kakiuchi N.
        • Yoshizato T.
        • et al.
        Age-related remodelling of oesophageal epithelia by mutated cancer drivers.
        Nature. 2019; 565: 312-317
        • Busque L.
        • Patel J.P.
        • Figueroa M.E.
        • et al.
        Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis.
        Nat Genet. 2012; 44: 1179-1181
        • Genovese G.
        • Kahler A.K.
        • Handsaker R.E.
        • et al.
        Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence.
        N Engl J Med. 2014; 371: 2477-2487
        • Jaiswal S.
        • Fontanillas P.
        • Flannick J.
        • et al.
        Age-related clonal hematopoiesis associated with adverse outcomes.
        N Engl J Med. 2014; 371: 2488-2498
        • Jaiswal S.
        • Ebert B.L.
        Clonal hematopoiesis in human aging and disease.
        Science. 2019; 366 (eaan4673)
        • Zink F.
        • Stacey S.N.
        • Norddahl G.L.
        • et al.
        Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly.
        Blood. 2017; 130: 742-752
        • Acuna-Hidalgo R.
        • Sengul H.
        • Steehouwer M.
        • et al.
        Ultra-sensitive sequencing identifies high prevalence of clonal hematopoiesis-associated mutations throughout adult life.
        Am J Hum Genet. 2017; 101: 50-64
        • Holliday R.
        • Grigg G.W.
        DNA methylation and mutation.
        Mutat Res. 1993; 285: 61-67
        • Dorsheimer L.
        • Assmus B.
        • Rasper T.
        • et al.
        Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure.
        JAMA Cardiol. 2019; 4: 25-33
        • Yura Y.
        • Miura-Yura E.
        • Katanasaka Y.
        • et al.
        The cancer therapy-related clonal hematopoiesis driver gene Ppm1d promotes inflammation and non-ischemic heart failure in mice.
        Circ Res. 2021; 129: 684-698
        • Jaiswal S.
        • Natarajan P.
        • Silver A.J.
        • et al.
        Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease.
        N Engl J Med. 2017; 377: 111-121
        • Bhattacharya R.
        • Zekavat S.M.
        • Haessler J.
        • et al.
        Clonal hematopoiesis is associated with higher risk of stroke.
        Stroke. 2022; 53: 788-797
        • Denicolo S.
        • Vogi V.
        • Keller F.
        • et al.
        Clonal hematopoiesis of indeterminate potential and diabetic kidney disease: a nested case-control study.
        Kidney Int Rep. 2022; 7: 876-888
        • Dawoud A.A.Z.
        • Gilbert R.D.
        • Tapper W.J.
        • Cross N.C.P.
        Clonal myelopoiesis promotes adverse outcomes in chronic kidney disease.
        Leukemia. 2022; 36: 507-515
        • Abelson S.
        • Collord G.
        • Ng S.W.K.
        • et al.
        Prediction of acute myeloid leukaemia risk in healthy individuals.
        Nature. 2018; 559: 400-404
        • Coombs C.C.
        • Zehir A.
        • Devlin S.M.
        • et al.
        Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes.
        Cell Stem Cell. 2017; 21 (e374): 374-382
        • Wong T.N.
        • Ramsingh G.
        • Young A.L.
        • et al.
        Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia.
        Nature. 2015; 518: 552-555
        • Xie M.
        • Lu C.
        • Wang J.
        • et al.
        Age-related mutations associated with clonal hematopoietic expansion and malignancies.
        Nat Med. 2014; 20: 1472-1478
        • Gillis N.K.
        • Ball M.
        • Zhang Q.
        • et al.
        Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study.
        Lancet Oncol. 2017; 18: 112-121
        • Takahashi K.
        • Wang F.
        • Kantarjian H.
        • et al.
        Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study.
        Lancet Oncol. 2017; 18: 100-111
        • Gibson C.J.
        • Lindsley R.C.
        • Tchekmedyian V.
        • et al.
        Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma.
        J Clin Oncol. 2017; 35: 1598-1605
        • Arends C.M.
        • Dimitriou S.
        • Stahler A.
        • et al.
        Clonal hematopoiesis is associated with improved survival in patients with metastatic colorectal cancer from the FIRE-3 trial.
        Blood. 2022; 139: 1593-1597
        • Chin D.W.L.
        • Yoshizato T.
        • Virding Culleton S.
        • et al.
        Aged healthy mice acquire clonal hematopoiesis mutations.
        Blood. 2022; 139: 629-634
        • Okano M.
        • Bell D.W.
        • Haber D.A.
        • Li E.
        DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development.
        Cell. 1999; 99: 247-257
        • Ley T.J.
        • Ding L.
        • Walter M.J.
        • et al.
        DNMT3A mutations in acute myeloid leukemia.
        N Engl J Med. 2010; 363: 2424-2433
        • Gao Q.
        • Steine E.J
        • Barrasa M.I.
        • et al.
        Deletion of the de novo DNA methyltransferase Dnmt3a promotes lung tumor progression.
        Proc Natl Acad Sci U S A. 2011; 108: 18061-18066
        • Kim M.S.
        • Kim Y.R.
        • Yoo N.J.
        • Lee S.H.
        Mutational analysis of DNMT3A gene in acute leukemias and common solid cancers.
        APMIS. 2013; 121: 85-94
        • Yang L.
        • Rau R.
        • Goodell M.A.
        DNMT3A in haematological malignancies.
        Nat Rev Cancer. 2015; 15: 152-165
        • Challen G.A.
        • Sun D.
        • Jeong M.
        • et al.
        Dnmt3a is essential for hematopoietic stem cell differentiation.
        Nat Genet. 2011; 44: 23-31
        • Challen G.A.
        • Sun D.
        • Mayle A.
        • et al.
        Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells.
        Cell Stem Cell. 2014; 15: 350-364
        • Jeong M.
        • Park H.J.
        • Celik H.
        • et al.
        Loss of Dnmt3a immortalizes hematopoietic stem cells in vivo.
        Cell Rep. 2018; 23: 1-10
        • Li X.
        • Zhang Q.
        • Ding Y.
        • et al.
        Methyltransferase Dnmt3a upregulates HDAC9 to deacetylate the kinase TBK1 for activation of antiviral innate immunity.
        Nat Immunol. 2016; 17: 806-815
        • Jaiswal S.
        • Libby P.
        Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease.
        Nat Rev Cardiol. 2020; 17: 137-144
        • Yu Q.
        • Zhou B.
        • Zhang Y.
        • et al.
        DNA methyltransferase 3a limits the expression of interleukin-13 in T helper 2 cells and allergic airway inflammation.
        Proc Natl Acad Sci U S A. 2012; 109: 541-546
        • Leoni C.
        • Montagner S.
        • Rinaldi A.
        • et al.
        Dnmt3a restrains mast cell inflammatory responses.
        Proc Natl Acad Sci U S A. 2017; 114: E1490-E1499
        • Sano S.
        • Oshima K.
        • Wang Y.
        • et al.
        CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease.
        Circ Res. 2018; 123: 335-341
        • Jacquelin S.
        • Straube J.
        • Cooper L.
        • et al.
        Jak2V617F and Dnmt3a loss cooperate to induce myelofibrosis through activated enhancer-driven inflammation.
        Blood. 2018; 132: 2707-2721
        • Zhong C.
        • Zhu J.
        Tet2: breaking down barriers to T cell cytokine expression.
        Immunity. 2015; 42: 593-595
        • Mahfoudhi E.
        • Talhaoui I.
        • Cabagnols X.
        • et al.
        TET2-mediated 5-hydroxymethylcytosine induces genetic instability and mutagenesis.
        DNA Repair (Amst). 2016; 43: 78-88
        • Pan F.
        • Wingo T.S.
        • Zhao Z.
        • et al.
        Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells.
        Nat Commun. 2017; 8: 15102
        • Cai Z.
        • Kotzin J.J.
        • Ramdas B.
        • et al.
        Inhibition of inflammatory signaling in Tet2 mutant preleukemic cells mitigates stress-induced abnormalities and clonal hematopoiesis.
        Cell Stem Cell. 2018; 23e835
        • Moran-Crusio K.
        • Reavie L.
        • Shih A.
        • et al.
        Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation.
        Cancer Cell. 2011; 20: 11-24
        • Li Z.
        • Cai X.
        • Cai C.L.
        • et al.
        Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies.
        Blood. 2011; 118: 4509-4518
        • Fuster J.J.
        • MacLauchlan S.
        • Zuriaga M.A.
        • et al.
        Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice.
        Science. 2017; 355: 842-847
        • Sano S.
        • Oshima K.
        • Wang Y.
        • et al.
        Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1beta/NLRP3 inflammasome.
        J Am Coll Cardiol. 2018; 71: 875-886
        • Cull A.H.
        • Snetsinger B.
        • Buckstein R.
        • Wells R.A.
        • Rauh M.J.
        Tet2 restrains inflammatory gene expression in macrophages.
        Exp Hematol. 2017; 55 (e13): 56-70
        • Jiang S.
        • Yan W.
        • Wang S.E.
        • Baltimore D.
        Dual mechanisms of posttranscriptional regulation of Tet2 by Let-7 microRNA in macrophages.
        Proc Natl Acad Sci U S A. 2019; 116: 12416-12421
        • Lv L.
        • Wang Q.
        • Xu Y.
        • et al.
        Vpr targets TET2 for degradation by CRL4(VprBP) E3 ligase to sustain IL-6 expression and enhance HIV-1 replication.
        Mol Cell. 2018; 70 (e965): 961-970
        • Ichiyama K.
        • Chen T.
        • Wang X.
        • et al.
        The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells.
        Immunity. 2015; 42: 613-626
        • Zang S.
        • Li J.
        • Yang H.
        • et al.
        Mutations in 5-methylcytosine oxidase TET2 and RhoA cooperatively disrupt T cell homeostasis.
        J Clin Invest. 2017; 127: 2998-3012
        • Yang R.
        • Qu C.
        • Zhou Y.
        • et al.
        Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis.
        Immunity. 2015; 43: 251-263
        • Yue X.
        • Lio C.J.
        • Samaniego-Castruita D.
        • Li X.
        • Rao A.
        Loss of TET2 and TET3 in regulatory T cells unleashes effector function.
        Nat Commun. 2019; 10: 2011
        • Tsagaratou A.
        • Gonzalez-Avalos E.
        • Rautio S.
        • et al.
        TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells.
        Nat Immunol. 2017; 18: 45-53
        • Muto H.
        • Sakata-Yanagimoto M.
        • Nagae G.
        • et al.
        Reduced TET2 function leads to T-cell lymphoma with follicular helper T-cell-like features in mice.
        Blood Cancer J. 2014; 4: e264
        • Meisel M.
        • Hinterleitner R.
        • Pacis A.
        • et al.
        Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host.
        Nature. 2018; 557: 580-584
        • Pandey S.P.
        • Bender M.J.
        • McPherson A.C.
        • et al.
        Tet2 deficiency drives liver microbiome dysbiosis triggering Tc1 cell autoimmune hepatitis.
        Cell Host Microbe. 2022; (30:1003–19.e10)
        • Fraietta J.A.
        • Nobles C.L
        • Sammons M.A.
        • et al.
        Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells.
        Nature. 2018; 558: 307-312
        • Pan W.
        • Zhu S.
        • Qu K.
        • et al.
        The DNA methylcytosine dioxygenase Tet2 sustains immunosuppressive function of tumor-infiltrating myeloid cells to promote melanoma progression.
        Immunity. 2017; 47 (e285): 284-297
        • Lee M.
        • Li J.
        • Li J.
        • et al.
        Tet2 inactivation enhances the antitumor activity of tumor-infiltrating lymphocytes.
        Cancer Res. 2021; 81: 1965-1976
        • Xu Y.P.
        • Lv L.
        • Liu Y.
        • et al.
        Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy.
        J Clin Invest. 2019; 129: 4316-4331
        • Chen L.L.
        • Smith M.D.
        • Lv L.
        • et al.
        USP15 suppresses tumor immunity via deubiquitylation and inactivation of TET2.
        Sci Adv. 2020; 6 (eabc9730)
        • Patton E.E.
        • Mueller K.L.
        • Adams D.J.
        • et al.
        Melanoma models for the next generation of therapies.
        Cancer Cell. 2021; 39: 610-631
        • Qu X.
        • Zhang S.
        • Wang S.
        • et al.
        TET2 deficiency leads to stem cell factor-dependent clonal expansion of dysfunctional erythroid progenitors.
        Blood. 2018; 132: 2406-2417
        • Sennikov S.V.
        • Krysov S.V.
        • Silkov A.N.
        • Injelevskaya T.V.
        • Kozlov V.A.
        Production of IL-10, TNF-alpha, IFN-gamma, TGF-beta1 by different populations of erythroid cells derived from human embryonal liver.
        Cytokine. 2002; 17: 221-225
        • Schneider R.K.
        • Schenone M.
        • Ferreira M.V.
        • et al.
        Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9.
        Nat Med. 2016; 22: 288-297
        • Xu C.
        • He J.
        • Wang H.
        • et al.
        Single-cell transcriptomic analysis identifies an immune-prone population in erythroid precursors during human ontogenesis.
        Nat Immunol. 2022; 23: 1109-1120
        • Han Y.
        • Liu Q.
        • Hou J.
        • et al.
        Tumor-induced generation of splenic erythroblast-like Ter-cells promotes tumor progression.
        Cell. 2018; 173 (e612): 634-648
        • Asada S.
        • Fujino T.
        • Goyama S.
        • Kitamura T.
        The role of ASXL1 in hematopoiesis and myeloid malignancies.
        Cell Mol Life Sci. 2019; 76: 2511-2523
        • Fisher C.L.
        • Randazzo F.
        • Humphries R.K.
        • Brock H.W.
        Characterization of Asxl1, a murine homolog of additional sex combs, and analysis of the Asx-like gene family.
        Gene. 2006; 369: 109-118
        • Fujino T.
        • Kitamura T.
        ASXL1 mutation in clonal hematopoiesis.
        Exp Hematol. 2020; 83: 74-84
        • Abdel-Wahab O.
        • Adli M.
        • LaFave L.M.
        • et al.
        ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression.
        Cancer Cell. 2012; 22: 180-193
        • Scheuermann J.C.
        • de Ayala Alonso A.G.
        • Oktaba K.
        • et al.
        Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB.
        Nature. 2010; 465: 243-247
        • Inoue D.
        • Fujino T.
        • Sheridan P.
        • et al.
        A novel ASXL1-OGT axis plays roles in H3K4 methylation and tumor suppression in myeloid malignancies.
        Leukemia. 2018; 32: 1327-1337
        • Abdel-Wahab O.
        • Gao J.
        • Adli M.
        • et al.
        Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo.
        J Exp Med. 2013; 210: 2641-2659
        • Inoue D.
        • Kitaura J.
        • Togami K.
        • et al.
        Myelodysplastic syndromes are induced by histone methylation-altering ASXL1 mutations.
        J Clin Invest. 2013; 123: 4627-4640
        • Balasubramani A.
        • Larjo A.
        • Bassein J.A.
        • et al.
        Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complex.
        Nat Commun. 2015; 6: 7307
        • Nagase R.
        • Inoue D.
        • Pastore A.
        • et al.
        Expression of mutant Asxl1 perturbs hematopoiesis and promotes susceptibility to leukemic transformation.
        J Exp Med. 2018; 215: 1729-1747
        • Yang H.
        • Kurtenbach S.
        • Guo Y.
        • et al.
        Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies.
        Blood. 2018; 131: 328-341
        • Inoue D.
        • Kitaura J.
        • Matsui H.
        • et al.
        SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS.
        Leukemia. 2015; 29: 847-857
        • Saika M.
        • Inoue D.
        • Nagase R.
        • et al.
        ASXL1 and SETBP1 mutations promote leukaemogenesis by repressing TGFbeta pathway genes through histone deacetylation.
        Sci Rep. 2018; 8: 15873
        • Asada S.
        • Goyama S.
        • Inoue D.
        • et al.
        Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis.
        Nat Commun. 2018; 9: 2733
        • Salem S.
        • Salem D.
        • Gros P.
        Role of IRF8 in immune cells functions, protection against infections, and susceptibility to inflammatory diseases.
        Hum Genet. 2020; 139: 707-721
        • Berghout J.
        • Langlais D.
        • Radovanovic I.
        • et al.
        Irf8-regulated genomic responses drive pathological inflammation during cerebral malaria.
        PLoS Pathog. 2013; 9e1003491
        • Bykov V.J.N.
        • Eriksson S.E.
        • Bianchi J.
        • Wiman K.G.
        Targeting mutant p53 for efficient cancer therapy.
        Nat Rev Cancer. 2018; 18: 89-102
        • Peller S.
        • Rotter V.
        TP53 in hematological cancer: low incidence of mutations with significant clinical relevance.
        Hum Mutat. 2003; 21: 277-284
        • Chen S.
        • Gao R.
        • Yao C.
        • et al.
        Genotoxic stresses promote clonal expansion of hematopoietic stem cells expressing mutant p53.
        Leukemia. 2018; 32: 850-854
        • Liu Y.
        • Elf S.E.
        • Miyata Y.
        • et al.
        p53 regulates hematopoietic stem cell quiescence.
        Cell Stem Cell. 2009; 4: 37-48
        • Asai T.
        • Liu Y.
        • Di Giandomenico S.
        • et al.
        Necdin, a p53 target gene, regulates the quiescence and response to genotoxic stress of hematopoietic stem/progenitor cells.
        Blood. 2012; 120: 1601-1612
        • Fortin J.
        • Bassi C.
        • Ramachandran P.
        • et al.
        Concerted roles of PTEN and ATM in controlling hematopoietic stem cell fitness and dormancy.
        J Clin Invest. 2021; 131 (e131698)
        • Song H.
        • Hollstein M.
        • Xu Y.
        p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM.
        Nat Cell Biol. 2007; 9: 573-580
        • Ito K.
        • et al.
        Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells.
        Nature. 2004; 431: 997-1002
        • Nakamura K.
        • Zhang M.
        • Kageyama S.
        • et al.
        Macrophage heme oxygenase-1-SIRT1-p53 axis regulates sterile inflammation in liver ischemia-reperfusion injury.
        J Hepatol. 2017; 67: 1232-1242
        • Ham S.W.
        • Jeon H.Y.
        • Jin X.
        • et al.
        TP53 gain-of-function mutation promotes inflammation in glioblastoma.
        Cell Death Differ. 2019; 26: 409-425
        • Lee J.G.
        • Lee S.
        • Jeon J.
        • et al.
        Host tp53 mutation induces gut dysbiosis eliciting inflammation through disturbed sialic acid metabolism.
        Microbiome. 2022; 10: 3
        • Morganti C.
        • Ito K.
        • Yanase C.
        • et al.
        NPM1 ablation induces HSC aging and inflammation to develop myelodysplastic syndrome exacerbated by p53 loss.
        EMBO Rep. 2022; 23: e54262
        • Vadakekolathu J.
        • Lai C.
        • Reeder S.
        • et al.
        TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML.
        Blood Adv. 2020; 4: 5011-5024
        • Rodier F.
        • Coppe J.P.
        • Patil C.K.
        • et al.
        Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion.
        Nat Cell Biol. 2009; 11: 973-979
        • Saft L.
        • Karimi M.
        • Ghaderi M.
        • et al.
        p53 protein expression independently predicts outcome in patients with lower-risk myelodysplastic syndromes with del(5q).
        Haematologica. 2014; 99: 1041-1049
        • Jadersten M.
        • Saft L.
        • Smith A.
        • et al.
        TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression.
        J Clin Oncol. 2011; 29: 1971-1979
        • Sperling A.S.
        • Guerra V.A.
        • Kennedy J.A.
        • et al.
        Lenalidomide promotes the development of TP53-mutated therapy-related myeloid neoplasms.
        Blood. 2022; (140:1753–63)
        • Lindsley R.C.
        • Saber W.
        • Mar B.G.
        • et al.
        Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation.
        N Engl J Med. 2017; 376: 536-547
        • Hsu J.I.
        • Dayaram T.
        • Tovy A.
        • et al.
        PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy.
        Cell Stem Cell. 2018; 23 (e706): 700-713
        • Swisher E.M.
        • Harrell M.I.
        • Norquist B.M.
        • et al.
        Somatic mosaic mutations in PPM1D and TP53 in the blood of women with ovarian carcinoma.
        JAMA Oncol. 2016; 2: 370-372
        • Fiscella M.
        • Zhang H.
        • Fan S.
        • et al.
        Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner.
        Proc Natl Acad Sci U S A. 1997; 94: 6048-6053
        • Takekawa M.
        • Adachi M.
        • Nakahata A.
        • et al.
        p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation.
        EMBO J. 2000; 19: 6517-6526
        • Lu X.
        • Nannenga B.
        • Donehower L.A.
        PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints.
        Genes Dev. 2005; 19: 1162-1174
        • Shreeram S.
        • Demidov O.N.
        • Hee W.K.
        • et al.
        Wip1 phosphatase modulates ATM-dependent signaling pathways.
        Mol Cell. 2006; 23: 757-764
        • Moon S.H.
        • Lin L.
        • Zhang X.
        • et al.
        Wild-type p53-induced phosphatase 1 dephosphorylates histone variant gamma-H2AX and suppresses DNA double strand break repair.
        J Biol Chem. 2010; 285: 12935-12947
        • Uyanik B.
        • Goloudina A.R.
        • Akbarali A.
        • et al.
        Inhibition of the DNA damage response phosphatase PPM1D reprograms neutrophils to enhance anti-tumor immune responses.
        Nat Commun. 2021; 12: 3622
        • Kahn J.D.
        • Miller P.G.
        • Silver A.J.
        • et al.
        PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells.
        Blood. 2018; 132: 1095-1105
        • Parganas E.
        • Wang D.
        • Stravopodis D.
        • et al.
        Jak2 is essential for signaling through a variety of cytokine receptors.
        Cell. 1998; 93: 385-395
        • Morris R.
        • Kershaw N.J.
        • Babon J.J.
        The molecular details of cytokine signaling via the JAK/STAT pathway.
        Protein Sci. 2018; 27: 1984-2009
        • Klampfl T.
        • Gisslinger H.
        • Harutyunyan A.S.
        • et al.
        Somatic mutations of calreticulin in myeloproliferative neoplasms.
        N Engl J Med. 2013; 369: 2379-2390
        • Cordua S.
        • Kjaer L.
        • Skov V.
        • et al.
        Prevalence and phenotypes of JAK2 V617F and calreticulin mutations in a Danish general population.
        Blood. 2019; 134: 469-479
        • Marty C.
        • Lacout C.
        • Martin A.
        • et al.
        Myeloproliferative neoplasm induced by constitutive expression of JAK2V617F in knock-in mice.
        Blood. 2010; 116: 783-787
        • Akada H.
        • Yan D.
        • Zou H.
        • et al.
        Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera-like disease.
        Blood. 2010; 115: 3589-3597
        • Mullally A.
        • Lane S.W.
        • Ball B.
        • et al.
        Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells.
        Cancer Cell. 2010; 17: 584-596
        • Zhao B.
        • Mei Y.
        • Cao L.
        • et al.
        Loss of pleckstrin-2 reverts lethality and vascular occlusions in JAK2V617F-positive myeloproliferative neoplasms.
        J Clin Invest. 2018; 128: 125-140
        • Li J.
        • Spensberger D.
        • Ahn J.S.
        • et al.
        JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia.
        Blood. 2010; 116: 1528-1538
        • Chen E.
        • Beer P.A.
        • Godfrey A.L.
        • et al.
        Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling.
        Cancer Cell. 2010; 18: 524-535
        • Wang Y.
        • Zuo X
        Cytokines frequently implicated in myeloproliferative neoplasms.
        Cytokine X. 2019; 1100005
        • Lussana F.
        • Rambaldi A.
        Inflammation and myeloproliferative neoplasms.
        J Autoimmun. 2017; 85: 58-63
        • Wang W.
        • Liu, W.
        • Fidler T.
        • et al.
        Macrophage inflammation, erythrophagocytosis, and accelerated atherosclerosis in Jak2 (V617F) mice.
        Circ Res. 2018; 123: e35-e47
        • Liu W.
        • Ostberg N.
        • Yalcinkaya M.
        • et al.
        Erythroid lineage Jak2V617F expression promotes atherosclerosis through erythrophagocytosis and macrophage ferroptosis.
        J Clin Invest. 2022; 132 (e155724)
        • Williams N.
        • Lee J.
        • Mitchell E.
        • et al.
        Life histories of myeloproliferative neoplasms inferred from phylogenies.
        Nature. 2022; 602: 162-168
        • Sousos N.
        • Ni Leathlobhair M.
        • Simoglou Karali C.
        • et al.
        In utero origin of myelofibrosis presenting in adult monozygotic twins.
        Nat Med. 2022; 28: 1207-1211
        • Trowbridge J.J.
        • Starczynowski D.T.
        Innate immune pathways and inflammation in hematopoietic aging, clonal hematopoiesis, and MDS.
        J Exp Med. 2021; 218
        • King K.Y.
        • Huang Y.
        • Nakada D.
        • Goodell M.A.
        Environmental influences on clonal hematopoiesis.
        Exp Hematol. 2020; 83: 66-73
        • Pronk E.
        • Raaijmakers M.
        The mesenchymal niche in MDS.
        Blood. 2019; 133: 1031-1038
        • Leimkuhler N.B.
        • Gleitz H.F.E.
        • Ronghui L.
        • et al.
        Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis.
        Cell Stem Cell. 2021; 28 (e638): 637-652
        • Reilly S.M.
        • Saltiel A.R.
        Adapting to obesity with adipose tissue inflammation.
        Nat Rev Endocrinol. 2017; 13: 633-643
        • Kay J.
        • Thadhani E.
        • Samson L.
        • Engelward B.
        Inflammation-induced DNA damage, mutations and cancer.
        DNA Repair (Amst). 2019; 83102673
        • Bogeska R.
        • Mikecin A.M.
        • Kaschutnig P.
        • et al.
        Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging.
        Cell Stem Cell. 2022; (29:1273–84.e1278)
        • Loberg M.A.
        • Bell R.K.
        • Goodwin L.O.
        • et al.
        Sequentially inducible mouse models reveal that Npm1 mutation causes malignant transformation of Dnmt3a-mutant clonal hematopoiesis.
        Leukemia. 2019; 33: 1635-1649
        • Hormaechea-Agulla D.
        • Matatall K.A.
        • Le D.T.
        • et al.
        Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNgamma signaling.
        Cell Stem Cell. 2021; 28 (e1426): 1428-1442
        • Liao M.
        • Chen R.
        • Yang Y.
        • et al.
        Aging-elevated inflammation promotes DNMT3A R878H-driven clonal hematopoiesis.
        Acta Pharm Sin B. 2022; 12: 678-691
        • Avagyan S.
        • Henninger J.E.
        • Mannherz W.P.
        • et al.
        Resistance to inflammation underlies enhanced fitness in clonal hematopoiesis.
        Science. 2021; 374: 768-772
        • Jeong J.J.
        • Gu X.
        • Nie J.
        • et al.
        Cytokine-regulated phosphorylation and activation of TET2 by JAK2 in hematopoiesis.
        Cancer Discov. 2019; 9: 778-795
        • Zebley C.C.
        • Abdelsamed H.A.
        • Ghoneim H.E.
        • et al.
        Proinflammatory cytokines promote TET2-mediated DNA demethylation during CD8 T cell effector differentiation.
        Cell Rep. 2021; 37109796
        • Rui J.
        • Deng S.
        • Perdigoto A.L.
        • et al.
        Tet2 controls the responses of beta cells to inflammation in autoimmune diabetes.
        Nat Commun. 2021; 12: 5074
        • Balakrishnan A.
        • Guruprasad K.P.
        • Satyamoorthy K.
        • Joshi M.B.
        Interleukin-6 determines protein stabilization of DNA methyltransferases and alters DNA promoter methylation of genes associated with insulin signaling and angiogenesis.
        Lab Invest. 2018; 98: 1143-1158
        • Domenis R.
        • Cifu A.
        • Mio C.
        • Fabris M.
        • Curcio F.
        Pro-inflammatory microenvironment modulates the transfer of mutated TP53 mediated by tumor exosomes.
        Int J Mol Sci. 2021; 22 (6258)
        • Swidnicka-Siergiejko A.K.
        • Gomez-Chou S.B.
        • Cruz-Monserrate Z.
        • et al.
        Chronic inflammation initiates multiple forms of K-Ras-independent mouse pancreatic cancer in the absence of TP53.
        Oncogene. 2017; 36: 3149-3158
        • Keerthivasan G.
        • Mei Y.
        • Zhao B.
        • et al.
        Aberrant overexpression of CD14 on granulocytes sensitizes the innate immune response in mDia1 heterozygous del(5q) MDS.
        Blood. 2014; 124: 780-790
        • Mei Y.
        • Zhao B.
        • Basiorka A.A.
        • et al.
        Age-related inflammatory bone marrow microenvironment induces ineffective erythropoiesis mimicking del(5q) MDS.
        Leukemia. 2018; 32: 1023-1033
        • Starczynowski D.T.
        • Kuchenbauer F.
        • Argiropoulos B.
        • et al.
        Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype.
        Nat Med. 2010; 16: 49-58
        • Mei Y.
        • Ren K.
        • Liu Y.
        • et al.
        Bone marrow confined IL-6 signaling mediates the progression of myelodysplastic syndromes to acute myeloid leukemia.
        J Clin Invest. 2022; (132:e152673)
        • Varney M.E.
        • Niederkorn M.
        • Konno H.
        • et al.
        Loss of Tifab, a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor-TRAF6 signaling.
        J Exp Med. 2015; 212: 1967-1985
        • Fang J.
        • Bolanos L.C.
        • Choi K.
        • et al.
        Ubiquitination of hnRNPA1 by TRAF6 links chronic innate immune signaling with myelodysplasia.
        Nat Immunol. 2017; 18: 236-245
        • Jacobs K.B.
        • Yeager M.
        • Zhou W.
        • et al.
        Detectable clonal mosaicism and its relationship to aging and cancer.
        Nat Genet. 2012; 44: 651-658
        • Zong H.
        • Espinosa J.S.
        • Su H.H.
        • Muzumdar M.D.
        • Luo L.
        Mosaic analysis with double markers in mice.
        Cell. 2005; 121: 479-492
        • Contreras X.
        • Amberg N.
        • Davaatseren A.
        • et al.
        A genome-wide library of MADM mice for single-cell genetic mosaic analysis.
        Cell Rep. 2021; 35109274
        • Tothova Z.
        • Krill-Burger J.M.
        • Popova K.D.
        • et al.
        Multiplex CRISPR/Cas9-based genome editing in human hematopoietic stem cells models clonal hematopoiesis and myeloid neoplasia.
        Cell Stem Cell. 2017; 21 (e548): 547-555
        • Shi X.
        • Kitano A.
        • Jiang Y.
        • et al.
        Clonal expansion and myeloid leukemia progression modeled by multiplex gene editing of murine hematopoietic progenitor cells.
        Exp Hematol. 2018; 64 (e35): 33-44
        • Liu B.
        • Jing Z.
        • Zhang X.
        • et al.
        Large-scale multiplexed mosaic CRISPR perturbation in the whole organism.
        Cell. 2022; (185:3008–24.e3016)